${ m DM6}: { m Puissances\ d'une\ matrice}$ À rendre avant le lundi 25/03/2024

CALCULATRICE INTERDITE

Il sera tenu compte dans la notation de la copie :

1. De la qualité de la rédaction :

justification des affirmations, introduction des variables utilisées, utilisation à bon escient des symboles \Longrightarrow , \Longleftrightarrow , $= \dots$

2. De la présentation :

résultats encadrés, calculs bien présentés, écriture aérée et lisible...

CONSIGNES:

- 1. Faire le DM6 sur feuille, comme vous le rédigeriez en DS, <u>sans inscrire son nom et son prénom</u> (votre copie doit rester anonyme).
- 2. Télécharger une application du type Genius Scan sur votre téléphone.
- 3. Scanner votre production et l'exporter au format pdf (attention à ne générer qu'un pdf seulement).
- 4. Renommer ce pdf NOM_DM6.pdf:

Au hasard, Maël nommera son fichier VIGNOLI_DM6.pdf (respecter ce formalisme).

5. Déposer ce pdf via moodle sur monbureaunumerique avant lundi 25/03/2024.

.

Problème : Différentes méthodes de calcul des puissances d'une matrice

Tout au long de ce problème, M désigne la matrice carrée d'ordre 3 à coefficients réels définie par :

$$\mathbf{M} = \left(\begin{array}{ccc} -7 & 0 & -8 \\ 4 & 1 & 4 \\ 4 & 0 & 5 \end{array} \right),$$

et I_3 désigne la matrice identité d'ordre 3, c'est-à-dire : $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Une première méthode pour le calcul des puissances de M . Considérons la matrice A définie par : $A=\frac{1}{4}(M-I_3)$.
 - 1.1 Calculer A puis A^2 .
 - 1.2 Exprimer la matrice M en fonction de la matrice A.
 - **1.3** Montrer que pour tout entier n appartenant à $\{0,1,2\}$, il existe un réel u_n tel que : $\mathbf{M}^n = \mathbf{I}_3 + u_n \mathbf{A}$.

 Nous rappelons que : $\mathbf{M}^0 = \mathbf{I}_3$.
 - **1.4** Montrer par récurrence, que pour tout entier naturel n, il existe un réel u_n tel que : $\mathbf{M}^n = \mathbf{I}_3 + u_n \mathbf{A}$.

 La preuve mettra en avant la relation : $\forall n \in \mathbb{N}$, $u_{n+1} = -3u_n + 4$.
 - **1.5** Considérons la suite (v_n) définie par : $\forall n \in \mathbb{N}$, $v_n = u_n 1$.
 - **1.5.1** Montrer que la suite (v_n) est une suite géométrique dont on précisera la raison.
 - **1.5.2** En déduire pour tout entier naturel n, une expression de v_n en fonction de n.
 - **1.5.3** En déduire alors, pour tout entier naturel n, une expression de u_n en fonction de n.
 - **1.6** Pour tout n appartenant à \mathbb{N} , en déduire une écriture matricielle de \mathbb{M}^n ne faisant intervenir que l'entier n.
- 2. Une seconde méthode de calcul des puissances de M .
 - **2.1** Montrer qu'il existe une unique matrice J appartenant à $\mathcal{M}_3(\mathbb{R})$ telle que : $M=4J-3I_3$.
 - **2.2** Calculer J^2 , puis pour tout entier naturel non nul n, J^n .
 - **2.3** Soit n un entier naturel non nul.
 - 2.3.1 Énoncer la formule du binôme.

2.3.2 Montrer que :
$$M^n = (-3)^n I_3 + \left(\sum_{k=1}^n \binom{n}{k} 4^k (-3)^{n-k}\right) J$$
.

2.3.3 Montrer que :
$$\sum_{k=1}^{n} \binom{n}{k} 4^k (-3)^{n-k} = 1 - (-3)^n.$$

- **2.3.4** En déduire une expression de \mathbf{M}^n en fonction de n, \mathbf{I}_3 et \mathbf{J} , puis une écriture matricielle de \mathbf{M}^n ne faisant intervenir que l'entier n.
- **2.4** Pour tout n appartenant à $\mathbb N$, en déduire une écriture matricielle de $\mathbb M^n$ ne faisant intervenir que l'entier n .