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Consider the di�erential equation

ε2
d2y

dx2
− Q(x)y = 0,

where

ε > 0, ε→ 0,

x ∈ [a, b],

Q : [a, b]→ R of class C 1.

Example

The Schrödinger equation (1925) :

d2y

dx2
− 2m

~2
(V (x)− E )y = 0.

Here ~ plays the role of ε and Q(x) = 2m(V (x)− E ).
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The zeros of Q(x) separate regions with oscillating behavior from

regions with exponential behavior.
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Consider the di�erential equation

ε
dy

dx
= A(x , ε)y , (1)

where

x is a complex variable,

ε is a small complex parameter,

A is a 2× 2 matrix of holomorphic and bounded functions on

D(0, r0)× D(0, ε0).

The case �A(0, 0) admits two distinct eigenvalues� is well known.

Otherwise the point x = 0 is a turning point for equation (1).



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Turning point
Mathematical background
Theorems of simpli�cation

Mathematical background

Consider the di�erential equation

ε
dy

dx
= A(x , ε)y , (1)

where

x is a complex variable,

ε is a small complex parameter,

A is a 2× 2 matrix of holomorphic and bounded functions on

D(0, r0)× D(0, ε0).

The case �A(0, 0) admits two distinct eigenvalues� is well known.

Otherwise the point x = 0 is a turning point for equation (1).



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Turning point
Mathematical background
Theorems of simpli�cation

Mathematical background

Consider the di�erential equation

ε
dy

dx
= A(x , ε)y , (1)

where

x is a complex variable,

ε is a small complex parameter,

A is a 2× 2 matrix of holomorphic and bounded functions on

D(0, r0)× D(0, ε0).

The case �A(0, 0) admits two distinct eigenvalues� is well known.

Otherwise the point x = 0 is a turning point for equation (1).



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Turning point
Mathematical background
Theorems of simpli�cation
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In this talk, we consider di�erential equations

ε
dy

dx
= A(x , ε)y ,

where

trA(x , ε) ≡ 0,

A0(x) := A(x , 0) =

(
0 xµ

xµ+ν 0

)
, with µ, ν ∈ N and

µ+ ν 6= 0.
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Hanson & Russell (1967)

Theorem. There exists a formal power series

T̂ (x , ε) =
∑
n≥0

Tn(x)εn

such that detT0(x) ≡ 1 and

ε
dy

dx
= A(x , ε)y ∼

y=T̂ (x,ε)z
ε
dz

dx
= B̂(x , ε)z
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ε
dy

dx
= A(x , ε)y ∼

y=T̂ (x,ε)z
ε
dz

dx
= B̂(x , ε)z

where

B̂(x , ε) = A0(x) + ε

(
b̂11(x , ε) b̂12(x , ε)

b̂21(x , ε) b̂22(x , ε)

)
and the b̂ij are polynomials in x :

degx b̂11 < µ, degx b̂12 < µ, degx b̂21 < µ+ν and degx b̂22 < µ.
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Main result

Theorem. If (C) is satis�ed, then ∀r ∈]0, r0[, ∀S , ∃T (x , ε)
holomorphic and bounded on D(0, r)× S such that :

detT0(x) ≡ 1,

ε
dy

dx
= A(x , ε)y ∼

y=T (x,ε)z
ε
dz

dx
= B(x , ε)z

where

B(x , ε) = A0(x) + ε

(
b11(x , ε) b12(x , ε)
b21(x , ε) −b11(x , ε)

)
and the bij are polynomials in x :

degx b11 < µ, degx b12 < µ and degx b21 < µ+ ν.
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Known results

ε
dy

dx
= A(x , ε)y and A0(x) =

(
0 xµ

xµ+ν 0

)
.

The case µ = 0 is well known :

Wasow treated the case A0(x) =

(
0 1

x 0

)
in 1965,

Lee treated the case A0(x) =

(
0 1

x2 0

)
in 1969,

Sibuya treated the case A0(x) =

(
0 1

xν 0

)
, ν ∈ N?, in 1974.
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Notations

Let

S = {η ∈ C, 0 < |η| < η0 and α0 < arg η < β0},
V (η) = {x ∈ C, ρ|η| < |x | < r and α′ < arg x < β′} ,
V = {X ∈ C, ρ < |X| and α < argX < β} .

Remark.

If η ∈ S and x ∈ V (η), then X = x
η ∈ V .
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Formal composite series

De�nition

A formal composite series associated to V and D(0, r) is a series of

this form

ŷ(x , η) =
∑
n≥0

(
an(x) + gn( xη )

)
ηn

such that ∀n ∈ N,
an is holomorphic and bounded on D(0, r),
gn is holomorphic and bounded on V and

gn(X) ∼
∑
m>0

gnmX
−m, as V 3 X→∞.

The series
∑
n≥0

an(x)η
n is called the slow part of ŷ(x , η).

The series
∑
n≥0

gn(
x
η
)ηn is called the fast part of ŷ(x , η).
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Outer and inner expansions

ŷ(x , η) =
∑
n≥0

(
an(x) + gn( xη )

)
ηn

How can we determine the an(x) and the gn(X ) ?

For �xed non-zero x , one computes the outer expansion

y(x , η) ∼
∑
n≥0

cn(x)ηn,

then one eliminates the terms with negative powers of x to obtain

the slow parts an(x) :

cn(x) an(x).
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Composite asymptotic expansion (CAsE)

Let y(x , η) be holomorphic and bounded for η ∈ S and for

x ∈ V (η), and let

ŷ(x , η) =
∑
n≥0

(
an(x) + gn( x

η
)
)
ηn

be a formal composite series.

De�nition

We say that y admits ŷ as composite asymptotic expansion

(CAsE), as η → 0 in S and x ∈ V (η), if ∀N ∈ N, ∃KN > 0,∣∣∣∣∣y(x , η)−
N−1∑
n=0

(
an(x) + gn( xη )

)
ηn

∣∣∣∣∣ ≤ KN |η|N ,

for all η ∈ S and all x ∈ V (η).
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Gevrey CAsE

De�nition

We say that y admits ŷ as CAsE of Gevrey order 1
p
, as η → 0 in S

and x ∈ V (η), if ∃C , L > 0, ∀N ∈ N,∣∣∣∣∣y(x , η)−
N−1∑
n=0

(
an(x) + gn( x

η
)
)
ηn

∣∣∣∣∣ ≤ CLNΓ(N
p

+ 1)|η|N ,

for all η ∈ S and all x ∈ V (η).

Notation: y(x , η) ∼ 1
p
ŷ(x , η), as η → 0 in S and x ∈ V (η).
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Assume that ν is even : ν = 2γ.

We consider a di�erential equation

ε
dy

dx
= A(x , ε)y ,

where

A(x , 0) =

(
0 xµ

xµ+2γ 0

)
.
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Fundamental matrix solution

Proposition. The di�erential equation εdy
dx

= A(x , ε)y has a

fundamental matrix solution of the form

Y (x , η) =

(
1 0

0 xγ

)
Q(x , η)eΛ(x ,η)

where

η is a certain root of ε, ε = ηp,
Q admits a CAsE of Gevrey order 1

p
,

Λ is a diagonal matrix :

Λ(x , η) =

(
− 1

p
xp

ηp + R1(ε) log x 0

0 1
p
xp

ηp + R2(ε) log x

)
.
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Slow-fast factorization

Theorem. There exist L(x , ε) holomorphic and bounded on

D(0, r)× S̃ and R(x , η) holomorphic and bounded for η ∈ S,

x ∈ V (η), such that :

Q(x , η) = L(x , ε) · R(x , η),

L(x , ε) ∼1

∑
n≥0

An(x)εn as ε→ 0 in S̃ and |x | < r ,

and

R(x , η) ∼ 1
p

∑
n≥0 Gn( xη )ηn as η → 0 in S and x ∈ V (η).
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Slow-fast factorization
Preparation of Y

As Q = L · R, we have

Y (x , η) =

(
1 0

0 xγ

)
Q(x , η)eΛ(x ,ε),

=

(
1 0

0 xγ

)
L(x , ε)

(
1 0

0 x−γ

)
︸ ︷︷ ︸

P(x , ε)

(
1 0

0 xγ

)
R(x , η)eΛ(x ,ε).
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Slow-fast factorization
Preparation of Y

The matrix Y (x , η) can be written

Y (x , η) = P(x , ε)

(
1 0

0 xγ

)
R(x , η)eΛ(x ,ε),

where

P is a slow matrix, i.e.

P(x , ε) ∼1

∑
n≥0

An(x)εn as S̃ 3 ε→ 0, |x | < r ,

R is a fast matrix, i.e.

R(x , η) ∼ 1
p

∑
n≥0

Gn( xη )ηn as S 3 η → 0, x ∈ V (η),

Λ is a diagonal matrix.
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Analytic simpli�cation

Proposition. The change of variables y = P(x , ε)z reduces the

di�erential equation εdy
dx

= A(x , ε)y to

ε
dz

dx
= B(x , ε)z ,

where B(x , ε) ∼1 B̂(x , ε),

B̂(x , ε) =

(
b̂11(x , ε) b̂12(x , ε)

b̂21(x , ε) −b̂11(x , ε)

)
,

and the b̂ij are polynomials in x.
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Analytic simpli�cation
Proof of the proposition

Proof. On the one hand,

B = P−1AP − εP−1P ′

and

B(x , ε) ∼1 B̂(x , ε).

On the other hand, Z (x , η) =

(
1 0

0 xγ

)
R(x , η)eΛ(x ,η) is a

fundamental matrix solution of equation ε dz
dx

= B(x , ε)z and

B(x , ε) = εZ ′(x , η)Z (x , η)−1.

We deduce a bound for the degree of each entry of B̂(x , ε).
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Thank you for your attention !



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Fundamental matrix solution
Slow-fast factorization
Analytic simpli�cation



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Fundamental matrix solution
Slow-fast factorization
Analytic simpli�cation

Condition (C)

We consider a di�erential equation

ε
dy

dx
= A(x , ε)y ,

where

A(x , ε) =

(
0 xµ

xµ+ν 0

)
+ ε

(
a(x , ε) b(x , ε)
c(x , ε) −a(x , ε)

)
.

Condition (C):

1 ν is even and c(x , 0) = O(x
1
2

(ν−2)),

2 ν is odd and c(x , 0) = O(x
1
2

(ν−1)).
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