On the analytic reduction of singularly perturbed differential equations

Charlotte Hulek

Université de Strasbourg

March 24, 2015

Outline

(1) Introduction and results
(2) Gevrey theory of CAsEs
(3) Proof of the main result

Consider the differential equation

$$
\varepsilon^{2} \frac{d^{2} y}{d x^{2}}-Q(x) y=0
$$

where

- $\varepsilon>0, \varepsilon \rightarrow 0$,
- $x \in[a, b]$,
- $Q:[a, b] \rightarrow \mathbb{R}$ of class C^{1}.

Consider the differential equation

$$
\varepsilon^{2} \frac{d^{2} y}{d x^{2}}-Q(x) y=0
$$

where

- $\varepsilon>0, \varepsilon \rightarrow 0$,
- $x \in[a, b]$,
- $Q:[a, b] \rightarrow \mathbb{R}$ of class C^{1}.

Example

The Schrödinger equation (1925) :

$$
\frac{d^{2} y}{d x^{2}}-\frac{2 m}{\hbar^{2}}(V(x)-E) y=0
$$

Here \hbar plays the role of ε and $Q(x)=2 m(V(x)-E)$.

Turning point

The zeros of $Q(x)$ separate regions with oscillating behavior from regions with exponential behavior.

Mathematical background

Consider the differential equation

$$
\begin{equation*}
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \tag{1}
\end{equation*}
$$

where

- x is a complex variable,
- ε is a small complex parameter,
- A is a 2×2 matrix of holomorphic and bounded functions on $D\left(0, r_{0}\right) \times D\left(0, \varepsilon_{0}\right)$.

Mathematical background

Consider the differential equation

$$
\begin{equation*}
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \tag{1}
\end{equation*}
$$

where

- x is a complex variable,
- ε is a small complex parameter,
- A is a 2×2 matrix of holomorphic and bounded functions on $D\left(0, r_{0}\right) \times D\left(0, \varepsilon_{0}\right)$.

The case $<A(0,0)$ admits two distinct eigenvalues» is well known.

Mathematical background

Consider the differential equation

$$
\begin{equation*}
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \tag{1}
\end{equation*}
$$

where

- x is a complex variable,
- ε is a small complex parameter,
- A is a 2×2 matrix of holomorphic and bounded functions on $D\left(0, r_{0}\right) \times D\left(0, \varepsilon_{0}\right)$.

The case $<A(0,0)$ admits two distinct eigenvalues» is well known.
Otherwise the point $x=0$ is a turning point for equation (1).

Mathematical background

In this talk, we consider differential equations

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

where

- $\operatorname{tr} A(x, \varepsilon) \equiv 0$,
- $A_{0}(x):=A(x, 0)=\left(\begin{array}{cc}0 & x^{\mu} \\ x^{\mu+\nu} & 0\end{array}\right)$, with $\mu, \nu \in \mathbb{N}$ and $\mu+\nu \neq 0$.

Theorems of simplification

Introduction and results

Hanson \& Russell (1967)

Theorem. There exists a formal power series

$$
\hat{T}(x, \varepsilon)=\sum_{n \geq 0} T_{n}(x) \varepsilon^{n}
$$

such that det $T_{0}(x) \equiv 1$ and

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad \underset{y=T(x, \varepsilon) z}{\sim} \quad \varepsilon \frac{d z}{d x}=\hat{B}(x, \varepsilon) z
$$

Hanson \& Russell (1967)

Theorem. There exists a formal power series

$$
\hat{T}(x, \varepsilon)=\sum_{n \geq 0} T_{n}(x) \varepsilon^{n}
$$

such that $\operatorname{det} T_{0}(x) \equiv 1$ and

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \underset{y=\hat{T}(x, \varepsilon) z}{\sim} \varepsilon \frac{d z}{d x}=\hat{B}(x, \varepsilon) z
$$

where

$$
\hat{B}(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{ll}
\hat{b}_{11}(x, \varepsilon) & \hat{b}_{12}(x, \varepsilon) \\
\hat{b}_{21}(x, \varepsilon) & \hat{b}_{22}(x, \varepsilon)
\end{array}\right)
$$

and the $\hat{b}_{i j}$ are polynomials in x :

Hanson \& Russell (1967)

Theorem. There exists a formal power series

$$
\hat{T}(x, \varepsilon)=\sum_{n \geq 0} T_{n}(x) \varepsilon^{n}
$$

such that $\operatorname{det} T_{0}(x) \equiv 1$ and

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \underset{y=T(x, \varepsilon) z}{\sim} \varepsilon \frac{d z}{d x}=\hat{B}(x, \varepsilon) z
$$

where

$$
\hat{B}(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{ll}
\hat{b}_{11}(x, \varepsilon) & \hat{b}_{12}(x, \varepsilon) \\
\hat{b}_{21}(x, \varepsilon) & \hat{b}_{22}(x, \varepsilon)
\end{array}\right)
$$

and the $\hat{b}_{i j}$ are polynomials in x :
$\operatorname{deg}_{x} \hat{b}_{11}<\mu, \quad \operatorname{deg}_{x} \hat{b}_{12}<\mu, \quad \operatorname{deg}_{x} \hat{b}_{21}<\mu+\nu \quad$ and $\quad \operatorname{deg}_{x} \hat{b}_{22}<\mu$.

Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Turning point
Mathematical background
Theorems of simplification

Main result

Introduction and results

Proof of the main result

Turning point
Theorems of simplification

Main result

Theorem. If (\mathcal{C}) is satisfied,

Introduction and results

Turning point

Main result

Theorem. If (\mathcal{C}) is satisfied, then $\forall r \in] 0, r_{0}[, \forall S, \exists T(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times S$ such that :

Main result

Theorem. If (\mathcal{C}) is satisfied, then $\forall r \in] 0, r_{0}[, \forall S, \exists T(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times S$ such that :

- $\operatorname{det} T_{0}(x) \equiv 1$,

Main result

Theorem. If (\mathcal{C}) is satisfied, then $\forall r \in] 0, r_{0}[, \forall S, \exists T(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times S$ such that :

- $\operatorname{det} T_{0}(x) \equiv 1$,
-

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad \underset{y=T(x, \varepsilon) z}{\sim} \quad \varepsilon \frac{d z}{d x}=B(x, \varepsilon) z
$$

where

$$
B(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{cc}
b_{11}(x, \varepsilon) & b_{12}(x, \varepsilon) \\
b_{21}(x, \varepsilon) & -b_{11}(x, \varepsilon)
\end{array}\right)
$$

and the $b_{i j}$ are polynomials in x :

Main result

Theorem. If (\mathcal{C}) is satisfied, then $\forall r \in] 0, r_{0}[, \forall S, \exists T(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times S$ such that :

- $\operatorname{det} T_{0}(x) \equiv 1$,

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad \underset{y=T(x, \varepsilon) z}{\sim} \quad \varepsilon \frac{d z}{d x}=B(x, \varepsilon) z
$$

where

$$
B(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{cc}
b_{11}(x, \varepsilon) & b_{12}(x, \varepsilon) \\
b_{21}(x, \varepsilon) & -b_{11}(x, \varepsilon)
\end{array}\right)
$$

and the $b_{i j}$ are polynomials in x :
$\operatorname{deg}_{x} b_{11}<\mu, \quad \operatorname{deg}_{x} b_{12}<\mu \quad$ and $\quad \operatorname{deg}_{x} b_{21}<\mu+\nu$.

Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Turning point Mathematical background Theorems of simplification

Known results

Known results

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad \text { and } \quad A_{0}(x)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+\nu} & 0
\end{array}\right)
$$

The case $\mu=0$ is well known :

- Wasow treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x & 0\end{array}\right)$ in 1965,
- Lee treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x^{2} & 0\end{array}\right)$ in 1969,
- Sibuya treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x^{\nu} & 0\end{array}\right), \nu \in \mathbb{N}^{\star}$, in 1974 .

Gevrey theory of composite asymptotic expansions

Notations

Notations

Let

- $S=\left\{\eta \in \mathbb{C}, 0<|\eta|<\eta_{0}\right.$ and $\left.\alpha_{0}<\arg \eta<\beta_{0}\right\}$,

Notations

Let

- $S=\left\{\eta \in \mathbb{C}, 0<|\eta|<\eta_{0}\right.$ and $\left.\alpha_{0}<\arg \eta<\beta_{0}\right\}$,
- $V(\eta)=\left\{x \in \mathbb{C}, \rho|\eta|<|x|<r\right.$ and $\left.\alpha^{\prime}<\arg x<\beta^{\prime}\right\}$,

Notations

Let

- $S=\left\{\eta \in \mathbb{C}, 0<|\eta|<\eta_{0}\right.$ and $\left.\alpha_{0}<\arg \eta<\beta_{0}\right\}$,
- $V(\eta)=\left\{x \in \mathbb{C}, \rho|\eta|<|x|<r\right.$ and $\left.\alpha^{\prime}<\arg x<\beta^{\prime}\right\}$,
- $V=\{\mathbf{X} \in \mathbb{C}, \rho<|\mathbf{X}|$ and $\alpha<\arg \mathbf{X}<\beta\}$.

Notations

Let

- $S=\left\{\eta \in \mathbb{C}, 0<|\eta|<\eta_{0}\right.$ and $\left.\alpha_{0}<\arg \eta<\beta_{0}\right\}$,
- $V(\eta)=\left\{x \in \mathbb{C}, \rho|\eta|<|x|<r\right.$ and $\left.\alpha^{\prime}<\arg x<\beta^{\prime}\right\}$,
- $V=\{\mathbf{X} \in \mathbb{C}, \rho<|\mathbf{X}|$ and $\alpha<\arg \mathbf{X}<\beta\}$.

Remark.
If $\eta \in S$ and $x \in V(\eta)$, then $\mathbf{X}=\frac{x}{\eta} \in V$.

Formal composite series

Definition

A formal composite series associated to V and $D(0, r)$ is a series of this form

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

such that $\forall n \in \mathbb{N}$,
a_{n} is holomorphic and bounded on $D(0, r)$,
g_{n} is holomorphic and bounded on V and

$$
g_{n}(\mathbf{X}) \sim \sum_{m>0} g_{n m} \mathbf{X}^{-m}, \text { as } V \ni \mathbf{X} \rightarrow \infty
$$

Formal composite series

Definition

A formal composite series associated to V and $D(0, r)$ is a series of this form

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

such that $\forall n \in \mathbb{N}$,
a_{n} is holomorphic and bounded on $D(0, r)$,
g_{n} is holomorphic and bounded on V and

$$
g_{n}(\mathbf{X}) \sim \sum_{m>0} g_{n m} \mathbf{X}^{-m}, \text { as } V \ni \mathbf{X} \rightarrow \infty
$$

The series $\sum a_{n}(x) \eta^{n}$ is called the slow part of $\hat{y}(x, \eta)$.
The series $\sum_{n \geq 0}^{n \geq 0} g_{n}\left(\frac{x}{\eta}\right) \eta^{n}$ is called the fast part of $\hat{y}(x, \eta)$.

Outer and inner expansions

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

How can we determine the $a_{n}(x)$ and the $g_{n}(X)$?

Outer and inner expansions

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

How can we determine the $a_{n}(x)$ and the $g_{n}(X)$?

For fixed non-zero x, one computes the outer expansion

$$
y(x, \eta) \sim \sum_{n \geq 0} c_{n}(x) \eta^{n}
$$

then one eliminates the terms with negative powers of x to obtain the slow parts $a_{n}(x)$:

$$
c_{n}(x) \rightsquigarrow a_{n}(x) .
$$

Outer and inner expansions

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

How can we determine the $a_{n}(x)$ and the $g_{n}(X)$?

Outer and inner expansions

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

How can we determine the $a_{n}(x)$ and the $g_{n}(X)$?

Analogously, one computes the inner expansion

$$
y(\eta X, \eta) \sim \sum_{n \geq 0} h_{n}(X) \eta^{n},
$$

then one eliminates the terms with non-negative powers of X to obtain the fast parts $g_{n}(X)$:

$$
h_{n}(X) \rightsquigarrow g_{n}(X) .
$$

Introduction and results

Composite asymptotic expansion (CAsE)

Composite asymptotic expansion (CAsE)

Let $y(x, \eta)$ be holomorphic and bounded for $\eta \in S$ and for $x \in V(\eta)$, and let

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

be a formal composite series.

Composite asymptotic expansion (CAsE)

Let $y(x, \eta)$ be holomorphic and bounded for $\eta \in S$ and for $x \in V(\eta)$, and let

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

be a formal composite series.

Definition

We say that y admits \hat{y} as composite asymptotic expansion (CAsE), as $\eta \rightarrow 0$ in S and $x \in V(\eta)$, if $\forall N \in \mathbb{N}, \exists K_{N}>0$,

$$
\left|y(x, \eta)-\sum_{n=0}^{N-1}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}\right| \leq K_{N}|\eta|^{N}
$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Composite asymptotic expansion (CAsE)

Let $y(x, \eta)$ be holomorphic and bounded for $\eta \in S$ and for $x \in V(\eta)$, and let

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

be a formal composite series.

Definition

We say that y admits \hat{y} as composite asymptotic expansion (CAsE), as $\eta \rightarrow 0$ in S and $x \in V(\eta)$, if $\forall N \in \mathbb{N}, \exists K_{N}>0$,

$$
\left|y(x, \eta)-\sum_{n=0}^{N-1}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}\right| \leq K_{N}|\eta|^{N}
$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Gevrey CAsE

Definition

We say that y admits \hat{y} as CAsE of Gevrey order $\frac{1}{p}$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$, if $\exists C, L>0, \forall N \in \mathbb{N}$,

$$
\left|y(x, \eta)-\sum_{n=0}^{N-1}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}\right| \leq C L^{N} \Gamma\left(\frac{N}{p}+1\right)|\eta|^{N},
$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Gevrey CAsE

Definition

We say that y admits \hat{y} as CAsE of Gevrey order $\frac{1}{p}$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$, if $\exists C, L>0, \forall N \in \mathbb{N}$,

$$
\left|y(x, \eta)-\sum_{n=0}^{N-1}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}\right| \leq C L^{N} \Gamma\left(\frac{N}{p}+1\right)|\eta|^{N},
$$

for all $\eta \in S$ and all $x \in V(\eta)$.
Notation: $y(x, \eta) \sim_{\frac{1}{p}} \hat{y}(x, \eta)$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$.

Proof of the main result

Introduction and results

Assume that ν is even : $\nu=2 \gamma$.

Assume that ν is even : $\nu=2 \gamma$.
We consider a differential equation

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

where

$$
A(x, 0)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+2 \gamma} & 0
\end{array}\right) .
$$

Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Analytic simplification

Fundamental matrix solution

Introduction and results

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$ has a fundamental matrix solution of the form

$$
Y(x, \eta)=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) e^{\wedge(x, \eta)}
$$

Introduction and results

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$ has a fundamental matrix solution of the form

$$
Y(x, \eta)=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) e^{\wedge(x, \eta)}
$$

where
η is a certain root of $\varepsilon, \varepsilon=\eta^{p}$,

Introduction and results

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$ has a fundamental matrix solution of the form

$$
Y(x, \eta)=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) e^{\wedge(x, \eta)}
$$

where
η is a certain root of $\varepsilon, \varepsilon=\eta^{p}$,
Q admits a CAsE of Gevrey order $\frac{1}{p}$,

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$ has a fundamental matrix solution of the form

$$
Y(x, \eta)=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) e^{\wedge(x, \eta)}
$$

where
η is a certain root of $\varepsilon, \varepsilon=\eta^{p}$,
Q admits a CAsE of Gevrey order $\frac{1}{p}$,
Λ is a diagonal matrix :

$$
\Lambda(x, \eta)=\left(\begin{array}{cc}
-\frac{1}{p} \frac{x^{p}}{\eta^{p}}+R_{1}(\varepsilon) \log x & 0 \\
0 & \frac{1}{p} \frac{x^{p}}{\eta^{p}}+R_{2}(\varepsilon) \log x
\end{array}\right) .
$$

Introduction and results

Fundamental matrix solution
Slow-fast factorization
Analytic simplification

Slow-fast factorization

Introduction and results

Slow-fast factorization

Theorem. There exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

$$
Q(x, \eta)=L(x, \varepsilon) \cdot R(x, \eta)
$$

Slow-fast factorization

Theorem. There exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

$$
Q(x, \eta)=L(x, \varepsilon) \cdot R(x, \eta)
$$

$$
L(x, \varepsilon) \sim_{1} \sum_{n \geq 0} A_{n}(x) \varepsilon^{n} \quad \text { as } \varepsilon \rightarrow 0 \text { in } \tilde{S} \text { and }|x|<r
$$

Slow-fast factorization

Theorem. There exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

$$
Q(x, \eta)=L(x, \varepsilon) \cdot R(x, \eta)
$$

$L(x, \varepsilon) \sim_{1} \sum_{n \geq 0} A_{n}(x) \varepsilon^{n} \quad$ as $\varepsilon \rightarrow 0$ in \tilde{S} and $|x|<r$,
and
$R(x, \eta) \sim_{\frac{1}{p}} \sum_{n \geq 0} G_{n}\left(\frac{x}{\eta}\right) \eta^{n} \quad$ as $\eta \rightarrow 0$ in S and $x \in V(\eta)$.

Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Fundamental matrix solution
Slow-fast factorization
Analytic simplification

Slow-fast factorization

Preparation of Y

Slow-fast factorization Preparation of Y

As $Q=L \cdot R$, we have

$$
\begin{aligned}
Y(x, \eta) & =\underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) \mathrm{e}^{\wedge(x, \varepsilon)},}_{P(x, \varepsilon)} \\
& =\underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) L(x, \varepsilon)\left(\begin{array}{cc}
1 & 0 \\
0 & x^{-\gamma}
\end{array}\right)}\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \varepsilon)} .
\end{aligned}
$$

Introduction and results

Analytic simplification

Slow-fast factorization

Preparation of Y
The matrix $Y(x, \eta)$ can be written

$$
Y(x, \eta)=P(x, \varepsilon)\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \varepsilon)}
$$

Analytic simplification

Slow-fast factorization

Preparation of Y

The matrix $Y(x, \eta)$ can be written

$$
Y(x, \eta)=P(x, \varepsilon)\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \varepsilon)}
$$

where
P is a slow matrix, i.e.

$$
P(x, \varepsilon) \sim_{1} \sum_{n \geq 0} A_{n}(x) \varepsilon^{n} \quad \text { as } \tilde{S} \ni \varepsilon \rightarrow 0,|x|<r
$$

Slow-fast factorization
 Preparation of Y

The matrix $Y(x, \eta)$ can be written

$$
Y(x, \eta)=P(x, \varepsilon)\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \varepsilon)}
$$

where
P is a slow matrix, i.e.

$$
P(x, \varepsilon) \sim_{1} \sum_{n \geq 0} A_{n}(x) \varepsilon^{n} \quad \text { as } \tilde{S} \ni \varepsilon \rightarrow 0,|x|<r
$$

R is a fast matrix, i.e.

$$
R(x, \eta) \sim_{\frac{1}{p}} \sum_{n \geq 0} G_{n}\left(\frac{x}{\eta}\right) \eta^{n} \quad \text { as } S \ni \eta \rightarrow 0, x \in V(\eta)
$$

Slow-fast factorization
 Preparation of Y

The matrix $Y(x, \eta)$ can be written

$$
Y(x, \eta)=P(x, \varepsilon)\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \varepsilon)}
$$

where
P is a slow matrix, i.e.

$$
P(x, \varepsilon) \sim_{1} \sum_{n \geq 0} A_{n}(x) \varepsilon^{n} \quad \text { as } \tilde{S} \ni \varepsilon \rightarrow 0,|x|<r
$$

R is a fast matrix, i.e.

$$
R(x, \eta) \sim_{\frac{1}{p}} \sum_{n \geq 0} G_{n}\left(\frac{x}{\eta}\right) \eta^{n} \quad \text { as } S \ni \eta \rightarrow 0, x \in V(\eta)
$$

Λ is a diagonal matrix.

Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Fundamental matrix solution
Slow-fast factorization
Analytic simplification

Analytic simplification

Analytic simplification

Proposition. The change of variables $y=P(x, \varepsilon) z$ reduces the differential equation $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$ to

$$
\varepsilon \frac{d z}{d x}=B(x, \varepsilon) z
$$

where $B(x, \varepsilon) \sim_{1} \hat{B}(x, \varepsilon)$,

$$
\hat{B}(x, \varepsilon)=\left(\begin{array}{cc}
\hat{b}_{11}(x, \varepsilon) & \hat{b}_{12}(x, \varepsilon) \\
\hat{b}_{21}(x, \varepsilon) & -\hat{b}_{11}(x, \varepsilon)
\end{array}\right)
$$

and the $\hat{b}_{i j}$ are polynomials in x.

Introduction and results

Analytic simplification

Proof of the proposition

Proof. On the one hand,

$$
B=P^{-1} A P-\varepsilon P^{-1} P^{\prime}
$$

and

$$
B(x, \varepsilon) \sim_{1} \hat{B}(x, \varepsilon)
$$

Analytic simplification
 Proof of the proposition

Proof. On the one hand,

$$
B=P^{-1} A P-\varepsilon P^{-1} P^{\prime}
$$

and

$$
B(x, \varepsilon) \sim_{1} \hat{B}(x, \varepsilon)
$$

On the other hand, $Z(x, \eta)=\left(\begin{array}{cc}1 & 0 \\ 0 & x^{\gamma}\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \eta)}$ is a fundamental matrix solution of equation $\varepsilon \frac{d z}{d x}=B(x, \varepsilon) z$ and

$$
B(x, \varepsilon)=\varepsilon Z^{\prime}(x, \eta) Z(x, \eta)^{-1}
$$

We deduce a bound for the degree of each entry of $\hat{B}(x, \varepsilon)$.

Analytic simplification
 Proof of the proposition

Proof. On the one hand,

$$
B=P^{-1} A P-\varepsilon P^{-1} P^{\prime}
$$

and

$$
B(x, \varepsilon) \sim_{1} \hat{B}(x, \varepsilon)
$$

On the other hand, $Z(x, \eta)=\left(\begin{array}{cc}1 & 0 \\ 0 & x^{\gamma}\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \eta)}$ is a fundamental matrix solution of equation $\varepsilon \frac{d z}{d x}=B(x, \varepsilon) z$ and

$$
B(x, \varepsilon)=\varepsilon Z^{\prime}(x, \eta) Z(x, \eta)^{-1}
$$

We deduce a bound for the degree of each entry of $\hat{B}(x, \varepsilon)$.

Introduction and results

Fundamental matrix solution
Slow-fast factorization
Analytic simplification

Thank you for your attention!

Introduction and results

Gevrey theory of CAsEs

Proof of the main result

Fundamental matrix solution
Slow-fast factorization
Analytic simplification

Condition (C)

We consider a differential equation

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

where

$$
A(x, \varepsilon)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+\nu} & 0
\end{array}\right)+\varepsilon\left(\begin{array}{cc}
\mathbf{a}(x, \varepsilon) & \mathbf{b}(x, \varepsilon) \\
\mathbf{c}(x, \varepsilon) & -\mathbf{a}(x, \varepsilon)
\end{array}\right) .
$$

Condition (C)

We consider a differential equation

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

where

$$
A(x, \varepsilon)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+\nu} & 0
\end{array}\right)+\varepsilon\left(\begin{array}{cc}
\mathbf{a}(x, \varepsilon) & \mathbf{b}(x, \varepsilon) \\
\mathbf{c}(x, \varepsilon) & -\mathbf{a}(x, \varepsilon)
\end{array}\right) .
$$

Condition (\mathcal{C}):
(1) ν is even and $\mathbf{c}(x, 0)=\mathcal{O}\left(x^{\frac{1}{2}(\nu-2)}\right)$,
(2) ν is odd and $\mathbf{c}(x, 0)=\mathcal{O}\left(x^{\frac{1}{2}(\nu-1)}\right)$.

