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Consider the differential equation

where
@ec>0e—0,
@ x € [a,b],
® @:[a,b] = R of class C.

Example
The Schrédinger equation (1925) :

Fy _om
dx2  R?

Here £ plays the role of € and Q(x) =2m(V(x) — E).

(V(x)— E)y =o.
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Turning point
The zeros of Q(x) separate regions with oscillating behavior from

regions with exponential behavior.
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Ea :A(Xv‘g))/7 (1)
where
@ x is a complex variable,
@ ¢ is a small complex parameter,

@ Ais a 2 x 2 matrix of holomorphic and bounded functions on
D(0, ry) x D(0, ).
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where
@ x is a complex variable,
@ ¢ is a small complex parameter,
@ Ais a 2 x 2 matrix of holomorphic and bounded functions on

D(0, ry) x D(0, ).

The case «A(0,0) admits two distinct eigenvalues» is well known.
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Mathematical background

Consider the differential equation
d
e = Alx.e)y. (1)

where

@ x is a complex variable,

@ ¢ is a small complex parameter,

@ Ais a 2 x 2 matrix of holomorphic and bounded functions on

D(0, ry) x D(0, ).

The case «A(0,0) admits two distinct eigenvalues» is well known.

Otherwise the point x = 0 is a turning point for equation (1).
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Mathematical background

In this talk, we consider differential equations

d
Y el
where

o trA(x,e) =0,

0 Xt .
o Ag(x) == A(x,0) = o ) with 4,7 € N and

nw+v #0.
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Hanson & Russell (1967)

Theorem. There exists a formal power series

T(x,e) =) Ta(x)e"

n>0
such that det To(x) =1 and
Q_A(X,S)y ~ 5£:B(X,€)Z

¢ dX - y=T(x,e)z dX
where A A
A bi1(x,e) bia(x,€)
B(x,e) = Ao(x)+¢| =« PN
( ) 0( ) ( b21(X,E) bgg(x,é‘)

and the i’ij are polynomials in x :
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Hanson & Russell (1967)

Theorem. There exists a formal power series
T(x,e) =) Ta(x)e"
n>0
such that det To(x) =1 and
dy dz

— A ~ ~“ _B
¢ dX (X’ g)y y=T(x,e)z gdx (X’ E)z

where A
é(x,e)_Ao(x)—i—E( 2 ) P

and the i’ij are polynomials in x :

deg, 1311 < p, deg, 1312 <p, deg, 1321 < p+v and deg, 1322 < f.
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Main result

Theorem. If (C) is satisfied, then Vr €]0, ry[, VS, 3T (x,¢)
holomorphic and bounded on D(0, r) x S such that :

e det To(x) =1,

°
sﬂ = A(x,¢e)y ~ 6% = B(x,¢)z

dX y=T(x,e)z

where

Be) =t +< (2009 b))

and the bj; are polynomials in x :



Turning point
Mathematical background
Theorems of simplification

Introduction and results

Main result

Theorem. If (C) is satisfied, then Vr €]0, ry[, VS, 3T (x,¢)
holomorphic and bounded on D(0, r) x S such that :

e det To(x) =1,

°
dy dz
T A(x,e)y e Cd T B(x,¢e)z

where

Be) =t +< (2009 b))

and the bj; are polynomials in x :

deg, b11 < pu, deg, bip < p and deg, by < pu+ .
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Known results

y . 0 x#
S A(x,e)y and Ag(x) = ( AN ) :

The case p = 0 is well known :

@ Wasow treated the case Ap(x) = < )0( (1) ) in 1965,
0 1.
o Lee treated the case Ap(x) = < 2 0 ) in 1969,

@ Sibuya treated the case Ag(x) = < (1) > v € N*, in 1974,
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Let
° S:{UGC; 0<|ny<n0andao<argn<ﬁ0}r

Bo
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S




Notations

Gevrey theory of CAsEs Definitions

Notations

Let
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o V(n)={xeC, pln| <|x|] <rand o <argx < ('},
o V={XeC, p<|X|and a <argX < }.
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Notations

Let
e S={neC,0<|n <mn and ag < argn < fo},
o V(n)={xeC, pln| <|x|] <rand o <argx < ('},
o V={XeC, p<|X|and a <argX < }.

Remark.

lfn€SandxeV(n), then X=2¢€V.
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Formal composite series

A formal composite series associated to V and D(0, r) is a series of

this form
goxm) =3 (an(x) + &a(2)) 0"

n>0

such that Vn € N,
an is holomorphic and bounded on D(0, r),
&n is holomorphic and bounded on V and

gn(X) ~ Z &mX ™M as V5 X — 0.

m>0
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Formal composite series

A formal composite series associated to V and D(0, r) is a series of

this form
goxm) =3 (an(x) + &a(2)) 0"

n>0

such that Vn € N,
an is holomorphic and bounded on D(0, r),
&n is holomorphic and bounded on V and

X) ~ Zg,,mx_m, as V> X — oo.
m>0

The series » "an(x)n" is called the slow part of y(x, 7).

n>0

The series Y "ga(%)n" is called the fast part of y(x,7).

n>0
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QOuter and inner expansions

90,m) =3 (an(x) + 8a(2)) 7"

n>0

How can we determine the ap(x) and the g,(X) 7

For fixed non-zero x, one computes the outer expansion

)/(X>77) ~ Z CH(X)nna

n>0

then one eliminates the terms with negative powers of x to obtain
the slow parts a,(x) :

cn(x) ~ an(x).
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QOuter and inner expansions

90,m) =3 (an(x) + 8a(2)) 7"

n>0

How can we determine the ap(x) and the g,(X) 7

Analogously, one computes the inner expansion

y(X,m) ~ > ha(X

n>0

then one eliminates the terms with non-negative powers of X to
obtain the fast parts g,(X) :

hn(X) ~> ga(X).
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Let y(x,n) be holomorphic and bounded for n € S and for
x € V(n), and let

y(x,m) = Z (a,,(x) +gn(%)) n"

n>0

be a formal composite series.
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Composite asymptotic expansion (CAsE)

Let y(x,n) be holomorphic and bounded for n € S and for
x € V(n), and let

y(x,m) = Z (an(X) +gn(%)) n"

n>0
be a formal composite series.

Definition

We say that y admits § as composite asymptotic expansion
(CAsE), asp — 0in S and x € V(n), if VN € N, 3Ky > 0,

( x) + gn( )) n"

n=0
forallp € S and all x € V(7).

N—

|_n

< Knn|",
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Gevrey CAsE

We say that y admits y as CAsE of Gevrey order %, asn—0in S
and x € V(n), if 3C,L >0, VN € N,

N—-1

y(am) = (an(x) + &a(2)) 1"| < CLVT(H + 1)) ",
n=0

foralln € S and all x € V(7).




Notations

Gevrey theory of CAsEs Definitions

Gevrey CAsE

We say that y admits y as CAsE of Gevrey order %, asn—0in S
and x € V(n), if 3C,L >0, VN € N,

N—-1

y(am) = (an(x) + &a(2)) 1"| < CLVT(H + 1)) ",
n=0

foralln € S and all x € V(7).

Notation: y(x,n) ~1 y(x,n),asn — 0in S and x € V(7).

°
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Assume that v is even : v = 2.

We consider a differential equation

dy

E’a:

0 xH
A(X,O) — ( XH‘+2'7 O > .

A(x,€)y,

where
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Y(x,n) = < 0 X > Q(x, n)e/\(x,n)
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fundamental matrix solution of the form
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7 is a certain root of e, £ = 0P,
Q@ admits a CAsE of Gevrey order %,
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Fundamental matrix solution

Proposition. The differential equation 5% = A(x,¢e)y has a
fundamental matrix solution of the form

1 0
Y(x,n) = < 0 X > Q(x, n)e/\(x,n)

where

7 is a certain root of e, £ = 0P,

Q@ admits a CAsE of Gevrey order %,
N is a diagonal matrix :

—1x2 1 Ri(e) log x 0 )

A — pnP
() ( 0 %;—Z + Ra(e) log x
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Slow-fast factorization

Theorem. There exist L(x,e) holomorphic and bounded on
D(0,r) x S and R(x,n) holomorphic and bounded forn € S,
x € V(n), such that :

Q(X,/I]) - L(X7E) ) R(Xﬂ?%
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Slow-fast factorization

Theorem. There exist L(x,e) holomorphic and bounded on
D(0,r) x S and R(x,n) holomorphic and bounded forn € S,
x € V(n), such that :

Q(X,/I]) - L(X7E) ) R(Xﬂ?%

L(x,e) ~1 ZA,,(X)E" ase—0inS and |x| <r,
n>0
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Slow-fast factorization

Theorem. There exist L(x,e) holomorphic and bounded on
D(0,r) x S and R(x,n) holomorphic and bounded forn € S,
x € V(n), such that :

Q(X,/I]) - L(X7E) ) R(Xﬂ?%

L(x,e) ~1 ZA,,(X)E" ase—0inS and |x| <r,
n>0
and

R(x,n) ~1 > on>0 Gn()n" asn—0in S and x € V(n).



Fundamental matrix solution
Slow-fast factorization
Proof of the main result Analytic simplification

Slow-fast factorization
Preparation of Y




Fundamental matrix solution
Slow-fast factorization
Proof of the main result Analytic simplification

Slow-fast factorization
Preparation of Y

As Q@ = L- R, we have

1o y
Vi) = (5 5 ) Qe

(10 1 0 1 0 M)
= <0 x7>L(X’€)<O x‘”)(O X7>R(x,n)e :

P(x,¢)
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1 0 ;
Vo) = Plxe) (o 00 ) Rxn)ee?)
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Slow-fast factorization
Preparation of Y

The matrix Y(x,7n) can be written

1 0 ;
Vo) = Plxe) (o 00 ) Rxn)ee?)

where
P is a slow matrix, i.e.

P(x,e) ~ ZA,,(X)E" as535e—0, x| <r,
n>0

R is a fast matrix, i.e.

R(x,n) ~1 Z G,,(%)n" as Son1—0, x e V(n),
n>0
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Slow-fast factorization
Preparation of Y

The matrix Y(x,7n) can be written

1 0 .
Y (x,n) = P(x€) ( 0 > R(x,n)e"*9),

where
P is a slow matrix, i.e.

P(x,e) ~ ZA,,(X)E" as535e—0, x| <r,
n>0

R is a fast matrix, i.e.

R(x,n) ~1 Z G,,(%)n" as Son1—0, x e V(n),
n>0

A is a diagonal matrix.
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Analytic simplification

Proposition. The change of variables y = P(x,¢)z reduces the
differential equation EZy = A(x,¢e)y to

dz
S v B(x,¢)z,

where B(x,¢) ~1 B(x,¢),

~ X b11( X, ) [A)}Q(X,E)
B( 76) ( b21( ) —bll(x,e) ) ’

and the B,J are polynomials in x.



Fundamental matrix solution
Slow-fast factorization
Proof of the main result Analytic simplification

Analytic simplification

Proof of the proposition

Proof. On the one hand,
B=P AP —cP P

and
B(x,e) ~1 B(x,¢).
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Proof of the proposition

Proof. On the one hand,
B=P AP —cP P

and
B(x,e) ~1 B(x,¢).

On the other hand, Z(x,n) = < é XOW ) R(x,n)eMxm is a
fundamental matrix solution of equation ¢% = B(x, <)z and

B(x,e) = eZ'(x,n)Z(x,n) L.

We deduce a bound for the degree of each entry of B(x,e).
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Analytic simplification
Proof of the proposition

Proof. On the one hand,
B=P AP —cP P

and
B(x,e) ~1 B(x,¢).

On the other hand, Z(x,n) = < é XOW ) R(x,n)eMxm is a
fundamental matrix solution of equation ¢% = B(x, <)z and

B(x,e) = eZ'(x,n)Z(x,n) L.

We deduce a bound for the degree of each entry of B(x,e).
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Thank you for your attention !



Fundamental matrix solution
Slow-fast factorization

Proof of the main result Analytic simplification




Fundamental matrix solution
Slow-fast factorization
Proof of the main result Analytic simplification

Condition (C)

We consider a differential equation

dy _

v A(x,e)y,

= (S ) e300
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Condition (C)

We consider a differential equation

dy _

ng - A(X,E)y,

= (S ) e300

Condition (C):
Q v is even and ¢(x,0) = (f)(xé(u—z))7
@ v is odd and ¢c(x,0) = O(X%(V—l))'
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