On the analytic reduction of singularly perturbed differential equations

Charlotte Hulek

Université de Strasbourg

March 24, 2015

Outline

Turning point Mathematical background Theorems of simplification

Consider the differential equation

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0,$$

where

•
$$\varepsilon > 0, \ \varepsilon \to 0,$$

• $x \in [a, b],$
• $Q: [a, b] \to \mathbb{R}$ of class C^1 .

Turning point Mathematical background Theorems of simplification

Consider the differential equation

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0,$$

where

•
$$\varepsilon > 0, \ \varepsilon \to 0,$$

• $x \in [a, b],$
• $Q: [a, b] \to \mathbb{R}$ of class C^1 .

Example

The Schrödinger equation (1925) :

$$\frac{d^2y}{dx^2}-\frac{2m}{\hbar^2}(V(x)-E)y=0.$$

Here \hbar plays the role of ε and Q(x) = 2m(V(x) - E).

Turning point Mathematical background Theorems of simplification

Turning point

The zeros of Q(x) separate regions with oscillating behavior from regions with exponential behavior.

Turning point Mathematical background Theorems of simplification

Mathematical background

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y,$$
 (1)

where

- x is a complex variable,
- ε is a small complex parameter,
- A is a 2 × 2 matrix of holomorphic and bounded functions on $D(0, r_0) \times D(0, \varepsilon_0)$.

Turning point Mathematical background Theorems of simplification

Mathematical background

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y, \qquad (1)$$

where

- x is a complex variable,
- ε is a small complex parameter,
- A is a 2 × 2 matrix of holomorphic and bounded functions on $D(0, r_0) \times D(0, \varepsilon_0)$.

The case $\ll A(0,0)$ admits two distinct eigenvalues» is well known.

Turning point Mathematical background Theorems of simplification

Mathematical background

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y,$$
 (1)

where

- x is a complex variable,
- ε is a small complex parameter,
- A is a 2 × 2 matrix of holomorphic and bounded functions on $D(0, r_0) \times D(0, \varepsilon_0)$.

The case $\ll A(0,0)$ admits two distinct eigenvalues» is well known. Otherwise the point x = 0 is a turning point for equation (1).

Turning point Mathematical background Theorems of simplification

Mathematical background

In this talk, we consider differential equations

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y,$$

where

• tr
$$A(x,\varepsilon) \equiv 0$$
,
• $A_0(x) := A(x,0) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix}$, with $\mu, \nu \in \mathbb{N}$ and $\mu + \nu \neq 0$.

Turning point Mathematical background Theorems of simplification

Theorems of simplification

Turning point Mathematical background Theorems of simplification

Hanson & Russell (1967)

Theorem. There exists a formal power series

$$\hat{T}(x,\varepsilon) = \sum_{n\geq 0} T_n(x)\varepsilon^n$$

such that det $T_0(x) \equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \sim \limits_{y=\hat{\tau}(x,\varepsilon)z} \quad \varepsilon \frac{dz}{dx} = \hat{B}(x,\varepsilon)z$$

Turning point Mathematical background Theorems of simplification

Hanson & Russell (1967)

Theorem. There exists a formal power series

$$\hat{T}(x,\varepsilon) = \sum_{n\geq 0} T_n(x)\varepsilon^n$$

such that det $T_0(x) \equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \sim \limits_{y=\hat{T}(x,\varepsilon)z} \quad \varepsilon \frac{dz}{dx} = \hat{B}(x,\varepsilon)z$$

where

$$\hat{B}(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} \hat{b}_{11}(x,\varepsilon) & \hat{b}_{12}(x,\varepsilon) \\ \hat{b}_{21}(x,\varepsilon) & \hat{b}_{22}(x,\varepsilon) \end{pmatrix}$$

and the \hat{b}_{ij} are polynomials in x :

Turning point Mathematical background Theorems of simplification

Hanson & Russell (1967)

Theorem. There exists a formal power series

$$\hat{T}(x,\varepsilon) = \sum_{n\geq 0} T_n(x)\varepsilon^n$$

such that det $T_0(x) \equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \sim \limits_{y=\hat{\tau}(x,\varepsilon)z} \quad \varepsilon \frac{dz}{dx} = \hat{B}(x,\varepsilon)z$$

where

$$\hat{B}(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} \hat{b}_{11}(x,\varepsilon) & \hat{b}_{12}(x,\varepsilon) \\ \hat{b}_{21}(x,\varepsilon) & \hat{b}_{22}(x,\varepsilon) \end{pmatrix}$$

and the \hat{b}_{ij} are polynomials in x :

 $\deg_x \hat{b}_{11} < \mu, \quad \deg_x \hat{b}_{12} < \mu, \quad \deg_x \hat{b}_{21} < \mu + \nu \quad \textit{and} \quad \deg_x \hat{b}_{22} < \mu.$

Turning point Mathematical background Theorems of simplification

Main result

Turning point Mathematical background Theorems of simplification

Main result

Theorem. If (\mathcal{C}) is satisfied,

Turning point Mathematical background Theorems of simplification

Main result

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon) holomorphic and bounded on <math>D(0, r) \times S$ such that :

Turning point Mathematical background Theorems of simplification

Main result

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon) holomorphic and bounded on <math>D(0, r) \times S$ such that :

• det $T_0(x) \equiv 1$,

Turning point Mathematical background Theorems of simplification

Main result

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon)]$ holomorphic and bounded on $D(0, r) \times S$ such that :

• det $T_0(x) \equiv 1$, • $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y \quad \underset{y=T(x,\varepsilon)z}{\sim} \quad \varepsilon \frac{dz}{dx} = B(x, \varepsilon)z$

where

$$B(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} b_{11}(x,\varepsilon) & b_{12}(x,\varepsilon) \\ b_{21}(x,\varepsilon) & -b_{11}(x,\varepsilon) \end{pmatrix}$$

and the b_{ij} are polynomials in x :

Turning point Mathematical background Theorems of simplification

Main result

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon)]$ holomorphic and bounded on $D(0, r) \times S$ such that :

• det $T_0(x) \equiv 1$, • $\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \underset{y=T(x,\varepsilon)z}{\sim} \quad \varepsilon \frac{dz}{dx} = B(x,\varepsilon)z$

where

$$B(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} b_{11}(x,\varepsilon) & b_{12}(x,\varepsilon) \\ b_{21}(x,\varepsilon) & -b_{11}(x,\varepsilon) \end{pmatrix}$$

and the b_{ij} are polynomials in x :

 $\deg_x b_{11} < \mu, \quad \deg_x b_{12} < \mu \quad \text{and} \quad \deg_x b_{21} < \mu + \nu.$

Turning point Mathematical background Theorems of simplification

Known results

Turning point Mathematical background Theorems of simplification

Known results

$$arepsilon rac{dy}{dx} = A(x,arepsilon)y \quad ext{and} \quad A_0(x) = \left(egin{array}{cc} 0 & x^\mu \ x^{\mu+
u} & 0 \end{array}
ight).$$

The case $\mu = 0$ is well known :

- Wasow treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x & 0 \end{pmatrix}$ in 1965,
- Lee treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x^2 & 0 \end{pmatrix}$ in 1969,
- Sibuya treated the case $A_0(x)=\left(egin{array}{cc} 0 & 1\ x^
 u & 0 \end{array}
 ight)$, $u\in\mathbb{N}^{\star}$, in 1974.

Notations Definitions

Gevrey theory of composite asymptotic expansions

Notations Definitions

Notations

Notations Definitions

Notations

Let

•
$$S = \{\eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \text{ and } \alpha_0 < \arg \eta < \beta_0\},$$

Notations Definitions

Notations

Let

•
$$S = \{\eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \text{ and } \alpha_0 < \arg \eta < \beta_0\},$$

• $V(\eta) = \{x \in \mathbb{C}, \ \rho |\eta| < |x| < r \text{ and } \alpha' < \arg x < \beta'\},$

Notations Definitions

Notations

Let

- $S=\{\eta\in\mathbb{C},\;0<|\eta|<\eta_0\; ext{and}\;lpha_0<rg\eta<eta_0\},$
- $V(\eta) = \{x \in \mathbb{C}, \ \rho |\eta| < |x| < r \text{ and } \alpha' < \arg x < \beta'\},$
- $V = \{ \mathbf{X} \in \mathbb{C}, \ \rho < |\mathbf{X}| \text{ and } \alpha < \arg \mathbf{X} < \beta \}.$

Notations Definitions

Notations

Let

•
$$S = \{\eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \text{ and } \alpha_0 < \arg \eta < \beta_0\},\$$

•
$$V = \{ \mathbf{X} \in \mathbb{C}, \ \rho < |\mathbf{X}| \text{ and } \alpha < \arg \mathbf{X} < \beta \}.$$

Remark.

If
$$\eta \in S$$
 and $x \in V(\eta)$, then $\mathbf{X} = \frac{x}{\eta} \in V$.

Formal composite series

Definition

A formal composite series associated to V and D(0, r) is a series of this form

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

such that $\forall n \in \mathbb{N}$, a_n is holomorphic and bounded on D(0,r), g_n is holomorphic and bounded on V and

$$g_n(\mathbf{X})\sim \sum_{m>0}g_{nm}\mathbf{X}^{-m}, \ \text{as} \ V
i \mathbf{X}
ightarrow\infty.$$

Notations Definitions

Formal composite series

Definition

A formal composite series associated to V and D(0, r) is a series of this form

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

such that $\forall n \in \mathbb{N}$, a_n is holomorphic and bounded on D(0, r), g_n is holomorphic and bounded on V and

$$g_n(\mathbf{X}) \sim \sum_{m>0} g_{nm} \mathbf{X}^{-m}, \text{ as } V \ni \mathbf{X} \to \infty.$$

The series $\sum_{n\geq 0} a_n(x)\eta^n$ is called the slow part of $\hat{y}(x,\eta)$. The series $\sum_{n\geq 0} g_n(\frac{x}{\eta})\eta^n$ is called the fast part of $\hat{y}(x,\eta)$.

Notations Definitions

Outer and inner expansions

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

How can we determine the $a_n(x)$ and the $g_n(X)$?

Notations Definitions

Outer and inner expansions

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

How can we determine the $a_n(x)$ and the $g_n(X)$?

For fixed non-zero x, one computes the outer expansion

$$y(x,\eta) \sim \sum_{n\geq 0} c_n(x)\eta^n,$$

then one eliminates the terms with negative powers of x to obtain the slow parts $a_n(x)$:

 $c_n(x) \rightsquigarrow a_n(x).$

Notations Definitions

Outer and inner expansions

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

How can we determine the $a_n(x)$ and the $g_n(X)$?

Notations Definitions

Outer and inner expansions

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

How can we determine the $a_n(x)$ and the $g_n(X)$?

Analogously, one computes the inner expansion

$$y(\eta X,\eta) \sim \sum_{n\geq 0} h_n(X)\eta^n,$$

then one eliminates the terms with non-negative powers of X to obtain the fast parts $g_n(X)$:

 $h_n(X) \rightsquigarrow g_n(X).$

Notations Definitions

Composite asymptotic expansion (CAsE)

Composite asymptotic expansion (CAsE)

Let $y(x,\eta)$ be holomorphic and bounded for $\eta \in S$ and for $x \in V(\eta)$, and let

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

be a formal composite series.

Composite asymptotic expansion (CAsE)

Let $y(x,\eta)$ be holomorphic and bounded for $\eta \in S$ and for $x \in V(\eta)$, and let

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

be a formal composite series.

Definition

We say that y admits \hat{y} as composite asymptotic expansion (CAsE), as $\eta \to 0$ in S and $x \in V(\eta)$, if $\forall N \in \mathbb{N}, \exists K_N > 0$,

$$\left| y(x,\eta) - \sum_{n=0}^{N-1} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n \right| \leq K_N |\eta|^N,$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Composite asymptotic expansion (CAsE)

Let $y(x,\eta)$ be holomorphic and bounded for $\eta \in S$ and for $x \in V(\eta)$, and let

$$\hat{y}(x,\eta) = \sum_{n\geq 0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

be a formal composite series.

Definition

We say that y admits \hat{y} as composite asymptotic expansion (CAsE), as $\eta \to 0$ in S and $x \in V(\eta)$, if $\forall N \in \mathbb{N}, \exists K_N > 0$,

$$\left| y(x,\eta) - \sum_{n=0}^{N-1} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n \right| \leq K_N |\eta|^N,$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Notations Definitions

Gevrey CAsE

Definition

We say that y admits \hat{y} as CASE of Gevrey order $\frac{1}{p}$, as $\eta \to 0$ in S and $x \in V(\eta)$, if $\exists C, L > 0$, $\forall N \in \mathbb{N}$,

$$\left|y(x,\eta)-\sum_{n=0}^{N-1}\left(a_n(x)+g_n(\frac{x}{\eta})\right)\eta^n\right|\leq CL^N\Gamma(\frac{N}{p}+1)|\eta|^N$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Notations Definitions

Gevrey CAsE

Definition

We say that y admits \hat{y} as CASE of Gevrey order $\frac{1}{p}$, as $\eta \to 0$ in S and $x \in V(\eta)$, if $\exists C, L > 0$, $\forall N \in \mathbb{N}$,

$$\left|y(x,\eta)-\sum_{n=0}^{N-1}\left(a_n(x)+g_n(\frac{x}{\eta})\right)\eta^n\right|\leq CL^N\Gamma(\frac{N}{p}+1)|\eta|^N$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Notation: $y(x,\eta) \sim_{\frac{1}{p}} \hat{y}(x,\eta)$, as $\eta \to 0$ in S and $x \in V(\eta)$.

Introduction and results	Fundamental matrix solution
Gevrey theory of CAsEs	
Proof of the main result	

Proof of the main result

Introduction and results	Fundamental matrix solution
Gevrey theory of CAsEs	
Proof of the main result	

Assume that ν is even : $\nu = 2\gamma$.

Introduction and results	Fundamental matrix solution
Gevrey theory of CAsEs	
Proof of the main result	

Assume that ν is even : $\nu = 2\gamma$.

We consider a differential equation

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y,$$

where

$$A(x,0) = \left(egin{array}{cc} 0 & x^\mu \ x^{\mu+2\gamma} & 0 \end{array}
ight).$$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Fundamental matrix solution

Fundamental matrix solution Slow-fast factorization Analytic simplification

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ has a fundamental matrix solution of the form

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)}$$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ has a fundamental matrix solution of the form

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)}$$

where

 η is a certain root of ε , $\varepsilon = \eta^p$,

Fundamental matrix solution Slow-fast factorization Analytic simplification

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ has a fundamental matrix solution of the form

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)}$$

where

 η is a certain root of ε , $\varepsilon = \eta^{p}$, Q admits a CAsE of Gevrey order $\frac{1}{p}$,

Fundamental matrix solution Slow-fast factorization Analytic simplification

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ has a fundamental matrix solution of the form

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)}$$

where

 η is a certain root of ε , $\varepsilon = \eta^{p}$, Q admits a CAsE of Gevrey order $\frac{1}{p}$, Λ is a diagonal matrix :

$$\Lambda(x,\eta) = \begin{pmatrix} -\frac{1}{p} \frac{x^p}{\eta^p} + R_1(\varepsilon) \log x & 0\\ 0 & \frac{1}{p} \frac{x^p}{\eta^p} + R_2(\varepsilon) \log x \end{pmatrix}$$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization

Theorem. There exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

 $Q(x,\eta) = L(x,\varepsilon) \cdot R(x,\eta),$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization

Theorem. There exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

 $Q(x,\eta) = L(x,\varepsilon) \cdot R(x,\eta),$

$$L(x,\varepsilon) \sim_1 \sum_{n \ge 0} A_n(x)\varepsilon^n$$
 as $\varepsilon \to 0$ in \tilde{S} and $|x| < r$,

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization

Theorem. There exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

 $Q(x,\eta) = L(x,\varepsilon) \cdot R(x,\eta),$

$$L(x,arepsilon)\sim_1 \sum_{n\geq 0} A_n(x)arepsilon^n$$
 as $arepsilon o 0$ in $ilde{S}$ and $|x|< r,$ and

 $R(x,\eta)\sim_{rac{1}{p}}\sum_{n\geq 0}G_n(rac{x}{\eta})\eta^n$ as $\eta
ightarrow 0$ in S and $x\in V(\eta).$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization Preparation of Y

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization Preparation of Y

As
$$Q = L \cdot R$$
, we have

$$Y(x, \eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x, \eta) e^{\Lambda(x, \varepsilon)},$$

$$= \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} L(x, \varepsilon) \begin{pmatrix} 1 & 0 \\ 0 & x^{-\gamma} \end{pmatrix}}_{P(x, \varepsilon)} \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x, \eta) e^{\Lambda(x, \varepsilon)}.$$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization Preparation of Y

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \left(egin{array}{cc} 1 & 0 \ 0 & x^\gamma \end{array}
ight) R(x,\eta) \mathrm{e}^{\Lambda(x,\varepsilon)},$$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization Preparation of Y

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \left(egin{array}{cc} 1 & 0 \ 0 & x^\gamma \end{array}
ight) R(x,\eta) \mathrm{e}^{\Lambda(x,\varepsilon)},$$

where

P is a slow matrix, i.e.

$$P(x,arepsilon) \sim_1 \sum_{n \geq 0} A_n(x) arepsilon^n$$
 as $ilde{S}
i arepsilon o 0, \ |x| < r,$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization Preparation of Y

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \left(egin{array}{cc} 1 & 0 \ 0 & x^\gamma \end{array}
ight) R(x,\eta) \mathrm{e}^{\Lambda(x,\varepsilon)},$$

where

P is a slow matrix, i.e.

$$P(x,arepsilon) \sim_1 \sum_{n \geq 0} A_n(x) arepsilon^n$$
 as $ilde{S}
i arepsilon o 0, \ |x| < r,$

R is a fast matrix, i.e.

$$R(x,\eta)\sim_{rac{1}{p}}\sum_{n\geq 0}G_n(rac{x}{\eta})\eta^n$$
 as $S
i \eta
ightarrow 0,\;x\in V(\eta),$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Slow-fast factorization Preparation of Y

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \left(egin{array}{cc} 1 & 0 \ 0 & x^\gamma \end{array}
ight) R(x,\eta) \mathrm{e}^{\Lambda(x,\varepsilon)},$$

where

P is a slow matrix, i.e.

$$P(x,arepsilon) \sim_1 \sum_{n \geq 0} A_n(x) arepsilon^n$$
 as $ilde{S}
i arepsilon o 0, \ |x| < r,$

R is a fast matrix, i.e.

$$R(x,\eta)\sim_{rac{1}{p}}\sum_{n\geq 0}G_n(rac{x}{\eta})\eta^n$$
 as $S
i\eta
ightarrow 0,\;x\in V(\eta),$

 Λ is a diagonal matrix.

Fundamental matrix solution Slow-fast factorization Analytic simplification

Analytic simplification

Fundamental matrix solution Slow-fast factorization Analytic simplification

Analytic simplification

Proposition. The change of variables $y = P(x, \varepsilon)z$ reduces the differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ to

$$\varepsilon \frac{dz}{dx} = B(x,\varepsilon)z,$$

where $B(x,arepsilon)\sim_1 \hat{B}(x,arepsilon)$,

$$\hat{B}(x,\varepsilon) = \left(egin{array}{cc} \hat{b}_{11}(x,\varepsilon) & \hat{b}_{12}(x,\varepsilon) \ \hat{b}_{21}(x,\varepsilon) & -\hat{b}_{11}(x,\varepsilon) \end{array}
ight),$$

and the \hat{b}_{ij} are polynomials in x.

Fundamental matrix solution Slow-fast factorization Analytic simplification

Analytic simplification Proof of the proposition

Proof. On the one hand,

$$B = P^{-1}AP - \varepsilon P^{-1}P'$$

and

$$B(x,\varepsilon)\sim_1 \hat{B}(x,\varepsilon).$$

Fundamental matrix solution Slow-fast factorization Analytic simplification

Analytic simplification Proof of the proposition

Proof. On the one hand,

$$B = P^{-1}AP - \varepsilon P^{-1}P'$$

and

$$B(x,\varepsilon) \sim_1 \hat{B}(x,\varepsilon).$$

On the other hand, $Z(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\eta)}$ is a fundamental matrix solution of equation $\varepsilon \frac{dz}{dx} = B(x,\varepsilon)z$ and

$$B(x,\varepsilon) = \varepsilon Z'(x,\eta) Z(x,\eta)^{-1}.$$

We deduce a bound for the degree of each entry of $\hat{B}(x,\varepsilon)$.

Fundamental matrix solution Slow-fast factorization Analytic simplification

Analytic simplification Proof of the proposition

Proof. On the one hand,

$$B = P^{-1}AP - \varepsilon P^{-1}P'$$

and

 $B(x,\varepsilon) \sim_1 \hat{B}(x,\varepsilon).$ On the other hand, $Z(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\eta)}$ is a fundamental matrix solution of equation $\varepsilon \frac{dz}{dx} = B(x,\varepsilon)z$ and

$$B(x,\varepsilon) = \varepsilon Z'(x,\eta) Z(x,\eta)^{-1}.$$

We deduce a bound for the degree of each entry of $\hat{B}(x,\varepsilon)$.

Introduction and results	Fundamental matrix solution
Gevrey theory of CAsEs	
Proof of the main result	Analytic simplification

Thank you for your attention !

Introduction and results	Fundamental matrix solution
Gevrey theory of CAsEs	
Proof of the main result	Analytic simplification

Introduction and results Gevrey theory of CAsEs Proof of the main result Analytic simplification

Condition (C)

We consider a differential equation

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y,$$

where

$$A(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

Introduction and resultsFundamental matrix solutioGevrey theory of CAsEsSlow-fast factorizationProof of the main resultAnalytic simplification

Condition (C)

We consider a differential equation

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y,$$

where

$$A(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

Condition (C):

ν is even and c(x,0) = O(x^{1/2(ν-2)}),
 ν is odd and c(x,0) = O(x^{1/2(ν-1)}).