Introduction and results Gevrey theory of CAsEs Proof of the main result Summability

Uniform simplification and summability

Charlotte Hulek

November 17, 2014

Outline

- Introduction and results
- ② Gevrey theory of CAsEs
- 3 Proof of the main result
- 4 Summability

Consider the differential equation

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0,$$

- $\varepsilon > 0$, $\varepsilon \to 0$,
- $x \in [a, b]$,
- $Q:[a,b] \to \mathbb{R}$ of class C^1 .

Consider the differential equation

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0,$$

where

- $\varepsilon > 0$, $\varepsilon \to 0$,
- $x \in [a, b]$,
- $Q:[a,b] \to \mathbb{R}$ of class C^1 .

Example

The Schrödinger equation (1925):

$$\frac{d^2y}{dx^2} - \frac{2m}{\hbar^2}(V(x) - E)y = 0.$$

Here \hbar plays the role of ε and Q(x) = 2m(V(x) - E).

Liouville-Green (1837)

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0 \tag{1}$$

If Q(x) > 0,

$$\phi^{\pm}(x,\varepsilon) = Q(x)^{-\frac{1}{4}} \exp\left(\pm \frac{1}{\varepsilon} \int_{-\infty}^{x} \sqrt{Q(\xi)} d\xi\right). \tag{2}$$

Liouville-Green (1837)

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0 \tag{1}$$

If Q(x) > 0,

$$\phi^{\pm}(x,\varepsilon) = Q(x)^{-\frac{1}{4}} \exp\left(\pm \frac{1}{\varepsilon} \int_{-\varepsilon}^{x} \sqrt{Q(\xi)} d\xi\right). \tag{2}$$

If Q(x) < 0,

$$\psi^{\pm}(x,\varepsilon) = (-Q(x))^{-\frac{1}{4}} \exp\left(\pm \frac{i}{\varepsilon} \int_{-\infty}^{x} \sqrt{-Q(\xi)} d\xi\right). \tag{3}$$

Liouville-Green (1837)

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0 \tag{1}$$

If Q(x) > 0,

$$\phi^{\pm}(x,\varepsilon) = Q(x)^{-\frac{1}{4}} \exp\left(\pm \frac{1}{\varepsilon} \int_{-\varepsilon}^{x} \sqrt{Q(\xi)} d\xi\right). \tag{2}$$

If Q(x) < 0,

$$\psi^{\pm}(x,\varepsilon) = (-Q(x))^{-\frac{1}{4}} \exp\left(\pm \frac{i}{\varepsilon} \int_{-\infty}^{x} \sqrt{-Q(\xi)} d\xi\right). \tag{3}$$

At a zero of Q, the functions (2) and (3) are not approximations of the solutions anymore.

Turning point

The zeros of Q separate regions with oscillating behavior from regions with exponential behavior.

Turning point

The zeros of Q(x) separate regions with oscillating behavior from regions with exponential behavior.

Definition

The zeros of Q are called turning points.

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,\tag{1}$$

- x is a complex variable,
- \bullet ε is a small complex parameter,
- A is a 2 × 2 matrix of holomorphic and bounded functions on $D(0, r_0) \times D(0, \varepsilon_0)$.

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,\tag{1}$$

where

- x is a complex variable,
- \bullet ε is a small complex parameter,
- A is a 2 × 2 matrix of holomorphic and bounded functions on $D(0, r_0) \times D(0, \varepsilon_0)$.

The case $\ll A(0,0)$ admits two distinct eigenvalues» is well known.

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,\tag{1}$$

where

- x is a complex variable,
- \bullet ε is a small complex parameter,
- A is a 2 × 2 matrix of holomorphic and bounded functions on $D(0, r_0) \times D(0, \varepsilon_0)$.

The case $\ll A(0,0)$ admits two distinct eigenvalues» is well known.

Otherwise the point x = 0 is a turning point for equation (1).

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,\tag{1}$$

Let $A_0(x)$ be the matrix A(x,0).

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,\tag{1}$$

Let $A_0(x)$ be the matrix A(x,0).

We assume that :

- $A_0(0)$ admits a unique eigenvalue 0,
- tr $A(x,\varepsilon) \equiv 0$,
- det $A_0(x) \not\equiv 0$.

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,\tag{1}$$

Let $A_0(x)$ be the matrix A(x,0).

We assume that:

- $A_0(0)$ admits a unique eigenvalue 0,
- tr $A(x,\varepsilon) \equiv 0$,
- det $A_0(x) \not\equiv 0$.

In this case $A_0(x)$ admits two distinct eigenvalues when $x \neq 0$, which are equal at x = 0.

Assumptions

We can reduce the study to differential equations of this form

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

•
$$\operatorname{tr} A(x,\varepsilon) \equiv 0$$
,

$$\bullet \ \ A_0(x) = \left(\begin{array}{cc} 0 & x^\mu \\ x^{\mu+\nu} & 0 \end{array} \right), \ \text{with} \ \ \mu,\nu \in \mathbb{N} \ \text{and} \ \ \mu+\nu \neq 0.$$

Condition (C)

We consider a differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

$$A(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

Condition (C)

We consider a differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

$$A(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

Condition (C)

We consider a differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

where

$$A(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

Condition (C):

- **1** ν is even and $\mathbf{c}(x,0) = \mathcal{O}(x^{\frac{1}{2}(\nu-2)}),$
- 2 ν is odd and $\mathbf{c}(x,0) = \mathcal{O}(x^{\frac{1}{2}(\nu-1)})$.

The Liouville-Green approximation Mathematical background Theorems of simplification

Theorems of simplification

Introduction and results Gevrey theory of CAsEs Proof of the main result Summability

The Liouville-Green approximation Mathematical background Theorems of simplification

Hanson & Russell (1967)

Theorem. There exists a formal power series

$$\hat{T}(x,\varepsilon) = \sum_{n\geq 0} T_n(x)\varepsilon^n$$

such that $\det T_0(x) \equiv 1$

Theorem. There exists a formal power series

$$\hat{T}(x,\varepsilon) = \sum_{n\geq 0} T_n(x)\varepsilon^n$$

such that $\det T_0(x) \equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y \quad \underset{y = \hat{\tau}(x, \varepsilon)z}{\sim} \quad \varepsilon \frac{dz}{dx} = \hat{B}(x, \varepsilon)z$$

Theorem. There exists a formal power series

$$\hat{T}(x,\varepsilon) = \sum_{n \ge 0} T_n(x)\varepsilon^n$$

such that $\det T_0(x) \equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \underset{y=\hat{\tau}(x,\varepsilon)z}{\sim} \quad \varepsilon \frac{dz}{dx} = \hat{B}(x,\varepsilon)z$$

where

$$\hat{B}(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} \hat{b}_{11}(x,\varepsilon) & \hat{b}_{12}(x,\varepsilon) \\ \hat{b}_{21}(x,\varepsilon) & \hat{b}_{22}(x,\varepsilon) \end{pmatrix}$$

and the \hat{b}_{ij} are polynomials in x:

Theorem. There exists a formal power series

$$\hat{T}(x,\varepsilon) = \sum_{n>0} T_n(x)\varepsilon^n$$

such that $\det T_0(x) \equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \underset{y=\hat{\tau}(x,\varepsilon)z}{\sim} \quad \varepsilon \frac{dz}{dx} = \hat{B}(x,\varepsilon)z$$

where

$$\hat{B}(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} \hat{b}_{11}(x,\varepsilon) & \hat{b}_{12}(x,\varepsilon) \\ \hat{b}_{21}(x,\varepsilon) & \hat{b}_{22}(x,\varepsilon) \end{pmatrix}$$

and the \hat{b}_{ii} are polynomials in x:

$$\deg_x \hat{b}_{11} < \mu, \quad \deg_x \hat{b}_{12} < \mu, \quad \deg_x \hat{b}_{21} < \mu + \nu \quad \textit{and} \quad \deg_x \hat{b}_{22} < \mu.$$

Introduction and results Gevrey theory of CAsEs Proof of the main result Summability

The Liouville-Green approximation Mathematical background Theorems of simplification

Main result

The Liouville-Green approximation Mathematical background Theorems of simplification

Main result

Theorem. If (C) is satisfied,

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S,$

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon)]$ holomorphic and bounded on $D(0, r) \times S$ such that :

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon)]$ holomorphic and bounded on $D(0, r) \times S$ such that :

• $T(x,\varepsilon) \sim_1 \hat{T}(x,\varepsilon)$ as $S \ni \varepsilon \to 0$, uniformly on D(0,r),

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon)]$ holomorphic and bounded on $D(0, r) \times S$ such that :

- $T(x,\varepsilon)\sim_1 \hat{T}(x,\varepsilon)$ as $S\ni\varepsilon\to 0$, uniformly on D(0,r),
- det $T_0(x) \equiv 1$,

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon)]$ holomorphic and bounded on $D(0, r) \times S$ such that :

- $T(x,\varepsilon) \sim_1 \hat{T}(x,\varepsilon)$ as $S \ni \varepsilon \to 0$, uniformly on D(0,r),
- det $T_0(x) \equiv 1$,

•

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y \quad \underset{y = T(x, \varepsilon)z}{\sim} \quad \varepsilon \frac{dz}{dx} = B(x, \varepsilon)z$$

where

$$B(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} b_{11}(x,\varepsilon) & b_{12}(x,\varepsilon) \\ b_{21}(x,\varepsilon) & -b_{11}(x,\varepsilon) \end{pmatrix}$$

and the b_{ij} are polynomials in x:

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[, \forall S, \exists T(x, \varepsilon)]$ holomorphic and bounded on $D(0, r) \times S$ such that :

- $T(x,\varepsilon) \sim_1 \hat{T}(x,\varepsilon)$ as $S \ni \varepsilon \to 0$, uniformly on D(0,r),
- det $T_0(x) \equiv 1$,

•

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y \quad \underset{y = \tau(x, \varepsilon)z}{\sim} \quad \varepsilon \frac{dz}{dx} = B(x, \varepsilon)z$$

where

$$B(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} b_{11}(x,\varepsilon) & b_{12}(x,\varepsilon) \\ b_{21}(x,\varepsilon) & -b_{11}(x,\varepsilon) \end{pmatrix}$$

and the b_{ii} are polynomials in x:

$$\deg_x b_{11} < \mu$$
, $\deg_x b_{12} < \mu$ and $\deg_x b_{21} < \mu + \nu$.

Introduction and results Gevrey theory of CAsEs Proof of the main result Summability

The Liouville-Green approximation Mathematical background Theorems of simplification

Known results

Known results

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 and $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix}$.

Known results

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 and $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix}$.

The case $\mu = 0$ is well known :

• Wasow treated the case $A_0(x)=\left(\begin{array}{cc} 0 & 1 \\ x & 0 \end{array}\right)$ in 1965,

Known results

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 and $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix}$.

The case $\mu = 0$ is well known :

- Wasow treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x & 0 \end{pmatrix}$ in 1965,
- Lee treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x^2 & 0 \end{pmatrix}$ in 1969,

Known results

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 and $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{pmatrix}$.

The case $\mu = 0$ is well known :

- Wasow treated the case $A_0(x)=\left(\begin{array}{cc} 0 & 1 \\ x & 0 \end{array}\right)$ in 1965,
- Lee treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x^2 & 0 \end{pmatrix}$ in 1969,
- Sibuya treated the case $A_0(x)=\left(\begin{array}{cc} 0 & 1 \\ x^{\nu} & 0 \end{array}\right)$, $\nu\in\mathbb{N}^{\star},$ in 1974.

Gevrey theory of composite asymptotic expansions

Let

•
$$S = \{ \eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \ \text{and} \ \alpha_0 < \arg \eta < \beta_0 \},$$

Let

- $S = \{ \eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \ \text{and} \ \alpha_0 < \arg \eta < \beta_0 \},$
- $V(\eta) = \{x \in \mathbb{C}, \ \rho |\eta| < |x| < r \text{ and } \alpha' < \arg x < \beta' \}$

Let

- $S = \{ \eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \ \text{and} \ \alpha_0 < \arg \eta < \beta_0 \},$
- $V(\eta) = \{x \in \mathbb{C}, \ \rho |\eta| < |x| < r \text{ and } \alpha' < \arg x < \beta' \}$
- $V = \{ \mathbf{X} \in \mathbb{C}, \ \rho < |\mathbf{X}| \text{ and } \alpha < \arg \mathbf{X} < \beta \}.$

Let

- $S = \{ \eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \ \text{and} \ \alpha_0 < \arg \eta < \beta_0 \},$
- $V(\eta) = \{x \in \mathbb{C}, \ \rho |\eta| < |x| < r \text{ and } \alpha' < \arg x < \beta'\}$,
- $V = \{ \mathbf{X} \in \mathbb{C}, \ \rho < |\mathbf{X}| \text{ and } \alpha < \arg \mathbf{X} < \beta \}.$

We call (\mathcal{P}) the following property :

If
$$\eta \in S$$
 and $x \in V(\eta)$, then $\mathbf{X} = \frac{x}{n} \in V$.

Formal composite series

Definition

A formal composite series associated to V and D(0,r) is a series of this form

$$\hat{y}(x,\eta) = \sum_{n>0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

such that $\forall n \in \mathbb{N}$,

 a_n is holomorphic and bounded on D(0,r), g_n is holomorphic and bounded on V and

$$g_n(\mathbf{X}) \sim \sum g_{nm} \mathbf{X}^{-m}, \text{ as } V \ni \mathbf{X} \to \infty.$$

Formal composite series

Definition

A formal composite series associated to V and D(0,r) is a series of this form

$$\hat{y}(x,\eta) = \sum_{n>0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

such that $\forall n \in \mathbb{N}$,

 a_n is holomorphic and bounded on D(0,r), g_n is holomorphic and bounded on V and

$$g_n(\mathbf{X}) \sim \sum_{\mathbf{X} \in \mathcal{A}} g_{nm} \mathbf{X}^{-m}$$
, as $V \ni \mathbf{X} \to \infty$.

The series $\sum_{n} a_n(x) \eta^n$ is called the slow part of $\hat{y}(x, \eta)$.

The series $\sum_{n\geq 0}^{\infty} g_n(\frac{x}{\eta})\eta^n$ is called the fast part of $\hat{y}(x,\eta)$.

Composite asymptotic expansion (CAsE)

Composite asymptotic expansion (CAsE)

Let $y(x, \eta)$ be holomorphic and bounded for $\eta \in S$ and for $x \in V(\eta)$, and let

$$\hat{y}(x,\eta) = \sum_{n>0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

be a formal composite series.

Composite asymptotic expansion (CAsE)

Let $y(x, \eta)$ be holomorphic and bounded for $\eta \in S$ and for $x \in V(\eta)$, and let

$$\hat{y}(x,\eta) = \sum_{n>0} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n$$

be a formal composite series.

Definition

We say that y admits \hat{y} as composite asymptotic expansion (CAsE), as $\eta \to 0$ in S and $x \in V(\eta)$, if $\forall N \in \mathbb{N}, \exists K_N > 0$,

$$\left| y(x,\eta) - \sum_{n=0}^{N-1} \left(a_n(x) + g_n(\frac{x}{\eta}) \right) \eta^n \right| \leq K_N |\eta|^N,$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Gevrey CAsE

Definition

We say that y admits \hat{y} as CAsE of Gevrey order $\frac{1}{p}$, as $\eta \to 0$ in S and $x \in V(\eta)$, if $\exists C, L > 0$, $\forall N \in \mathbb{N}$,

$$\left|y(x,\eta)-\sum_{n=0}^{N-1}\left(a_n(x)+g_n(\frac{x}{\eta})\right)\eta^n\right|\leq CL^N\Gamma(\frac{N}{p}+1)|\eta|^N,$$

for all $\eta \in S$ and all $x \in V(\eta)$ and

$$g_n(\mathbf{X}) \sim_{\frac{1}{p}} \sum_{\mathbf{x} \in \mathcal{X}} g_{nm} \mathbf{X}^{-m}, \text{ as } V \ni \mathbf{X} \to \infty.$$

Gevrey CAsE

Definition

We say that y admits \hat{y} as CAsE of Gevrey order $\frac{1}{p}$, as $\eta \to 0$ in S and $x \in V(\eta)$, if $\exists C, L > 0$, $\forall N \in \mathbb{N}$,

$$\left|y(x,\eta)-\sum_{n=0}^{N-1}\left(a_n(x)+g_n(\frac{x}{\eta})\right)\eta^n\right|\leq CL^N\Gamma(\frac{N}{p}+1)|\eta|^N,$$

for all $\eta \in S$ and all $x \in V(\eta)$ and

$$g_n(\mathbf{X}) \sim_{\frac{1}{p}} \sum_{m>0} g_{nm} \mathbf{X}^{-m}$$
, as $V \ni \mathbf{X} \to \infty$.

Notation: $y(x,\eta) \sim_{\frac{1}{2}} \hat{y}(x,\eta)$, as $\eta \to 0$ in S and $x \in V(\eta)$.

A consistent good covering (c.g.c.) is a collection $S_{\ell}, V^{j}, V^{j}_{\ell}(\eta), \ell = 1, \ldots, L, j = 1, \ldots, J$, such that

A consistent good covering (c.g.c.) is a collection S_ℓ , V^j , $V^j_\ell(\eta)$, $\ell=1,\ldots,L, j=1,\ldots,J$, such that

• $(S_{\ell})_{\ell}$ is a good covering of $D(0, \eta_0)^{\star}$,

A consistent good covering (c.g.c.) is a collection S_{ℓ} , V^{j} , $V^{J}_{\ell}(\eta)$, $\ell=1,\ldots,L, j=1,\ldots,J$, such that

- $(S_{\ell})_{\ell}$ is a good covering of $D(0, \eta_0)^*$,
- $(V^j)_j$ is a good covering of $\{\mathbf{X} \in \mathbb{C}, \ |\mathbf{X}| > \rho\}$,

A consistent good covering (c.g.c.) is a collection S_{ℓ} , V^{j} , $V^{J}_{\ell}(\eta)$, $\ell=1,\ldots,L, j=1,\ldots,J$, such that

- $(S_{\ell})_{\ell}$ is a good covering of $D(0, \eta_0)^{\star}$,
- $(V^j)_j$ is a good covering of $\{\mathbf{X} \in \mathbb{C}, \ |\mathbf{X}| > \rho\}$,
- for all $\eta \in S_{\ell}$, $(V_{\ell}^{j}(\eta))_{j}$ is a good covering of $\{x \in \mathbb{C}, \ \rho | \eta | < |x| < r\}$,

A consistent good covering (c.g.c.) is a collection $S_\ell, V^j, V^j_\ell(\eta)$, $\ell=1,\ldots,L, j=1,\ldots,J$, such that

- $(S_{\ell})_{\ell}$ is a good covering of $D(0, \eta_0)^*$,
- $(V^j)_j$ is a good covering of $\{\mathbf{X} \in \mathbb{C}, \ |\mathbf{X}| > \rho\}$,
- for all $\eta \in S_{\ell}$, $(V_{\ell}^{j}(\eta))_{j}$ is a consistent good covering of $\{x \in \mathbb{C}, \ \rho |\eta| < |x| < r\}$,
- if $\eta \in S_\ell$ and $x \in V^j_\ell(\eta)$, then $\frac{x}{\eta} \in V^j$.

Theorem of Fruchard-Schäfke

A theorem of Ramis-Sibuya type

Let $S_\ell, V^j, V^j_\ell(\eta), \ell = 1, \dots, L, j = 1, \dots, J$, be a consistent good covering.

```
Let S_\ell, V^j, V^j_\ell(\eta), \ell=1,\ldots,L, j=1,\ldots,J, be a consistent good covering. Let \left(y^j_\ell(x,\eta)\right)_{i,\ell} be a collection of holomorphic and bounded
```

functions defined for $\eta \in S_\ell$ and $x \in V_\ell^j(\eta)$.

lf

$$\left| \left(y_{\ell+1}^j - y_{\ell}^j \right) (x, \eta) \right| = \mathcal{O} \left(e^{-\frac{A}{|\eta|^p}} \right)$$

lf

$$\left|\left(y_{\ell}^{j+1}-y_{\ell}^{j}\right)(x,\eta)\right|=\mathcal{O}\left(e^{-B\left|\frac{x}{\eta}\right|^{p}}\right),$$

lf

$$\left| \left(y_{\ell+1}^j - y_{\ell}^j \right) (x, \eta) \right| = \mathcal{O} \left(e^{-\frac{A}{|\eta|^p}} \right)$$

and

$$\left|\left(y_{\ell}^{j+1}-y_{\ell}^{j}\right)(x,\eta)\right|=\mathcal{O}\left(\mathrm{e}^{-B\left|\frac{x}{\eta}\right|^{p}}\right),$$

then

$$y_{\ell}^{j}(x,\eta) \sim_{\frac{1}{\rho}} \sum_{n>0} \left(a_{n}(x) + g_{n}^{j}(\frac{x}{\eta})\right) \eta^{n},$$

$$g_n^j(\mathbf{X}) \sim_{rac{1}{p}} \sum g_{nm} \mathbf{X}^{-m}, \ ext{as} \ V^j
i \mathbf{X}
ightarrow \infty.$$

Fundamental matrix solutior Slow-fast factorization Analytic simplification

Proof of the main result

Assume that ν is even : $\nu=2\gamma$.

Assume that ν is even : $\nu = 2\gamma$.

We consider a differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

where

$$A(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

Assume that ν is even : $\nu = 2\gamma$.

We consider a differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

where

$$A(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

In this case, the condition (C) becomes $\mathbf{c}(x,0) = \mathcal{O}(x^{\gamma-1})$.

Steps of the proof

Fundamental matrix solution

Steps of the proof

- Fundamental matrix solution
- Slow-fast factorization of a CAsE

Steps of the proof

- Fundamental matrix solution
- Slow-fast factorization of a CAsE
- Analytic simplification

Introduction and results Gevrey theory of CAsEs Proof of the main result Summability

Fundamental matrix solution Slow-fast factorization Analytic simplification

Fundamental matrix solution

Fundamental matrix solution

Proposition. The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ has a fundamental matrix solution of the form

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta)e^{\Lambda(x,\eta)}$$

Proposition. The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ has a fundamental matrix solution of the form

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta)e^{\Lambda(x,\eta)}$$

where

$$\eta$$
 is a root of ε , $\varepsilon = \eta^p$, with $p = \mu + \gamma + 1$,

Proposition. The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ has a fundamental matrix solution of the form

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta)e^{\Lambda(x,\eta)}$$

where

$$\eta$$
 is a root of ε , $\varepsilon=\eta^p$, with $p=\mu+\gamma+1$, Q admits a CAsE of Gevrey order $\frac{1}{p}$,

Proposition. The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ has a fundamental matrix solution of the form

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta)e^{\Lambda(x,\eta)}$$

where

 η is a root of ε , $\varepsilon=\eta^p$, with $p=\mu+\gamma+1$, Q admits a CAsE of Gevrey order $\frac{1}{p}$, Λ is a diagonal matrix.

Fundamental matrix solution Preparation of equation (1)

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 where $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix}$,
 $\downarrow \qquad \qquad y = T(x)u$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u$ where $B_0(x) = \begin{pmatrix} -x^{\rho-1} & 0 \\ 0 & x^{\rho-1} \end{pmatrix}$,
 $\downarrow \qquad \qquad u = \Phi(x, \eta)v \text{ and } \varepsilon = \eta^{\rho}$
(3) $\eta^{\rho} \frac{dv}{dx} = C(x, \eta)v$ where $C(x, \eta) = \begin{pmatrix} \star & 0 \\ 0 & \star \end{pmatrix}$.

Fundamental matrix solution Preparation of equation (1)

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 where $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix}$,
 $\downarrow \qquad \qquad y = T(x)u$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u$ where $B_0(x) = \begin{pmatrix} -x^{p-1} & 0 \\ 0 & x^{p-1} \end{pmatrix}$,
 $\downarrow \qquad \qquad u = \Phi(x, \eta)v$ and $\varepsilon = \eta^p$
(3) $\eta^p \frac{dv}{dx} = C(x, \eta)v$ where $C(x, \eta) = \begin{pmatrix} \star & 0 \\ 0 & \star \end{pmatrix}$.

We now make the second change of variables explicit:

$$u = \Phi v$$
 and $\varepsilon = \eta^p$.

We now make the second change of variables explicit:

$$u = \Phi v$$
 and $\varepsilon = \eta^p$.

The matrix Φ is as follows:

$$\Phi = \left(egin{array}{cc} 1 & \phi^- \ \phi^+ & 1 \end{array}
ight).$$

We now make the second change of variables explicit:

$$u = \Phi v$$
 and $\varepsilon = \eta^p$.

The matrix Φ is as follows:

$$\Phi = \left(egin{array}{cc} 1 & \phi^- \ \phi^+ & 1 \end{array}
ight).$$

The function ϕ^+ , resp. ϕ^- , satisfies a Riccati equation :

$$\eta^p \frac{d\phi}{dx} = \pm 2x^{p-1}\phi + F^{\pm}(\phi)(x,\eta).$$

Existence of ϕ^+

$$\eta^{p} \frac{d\phi}{dx}^{+} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

Let \mathcal{M}_k be the set of holomorphic functions $\phi(x,\eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$ such that $|\phi(x,\eta)| \leq k$.

$$\eta^{p} \frac{d\phi}{dx}^{+} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

Let \mathcal{M}_k be the set of holomorphic functions $\phi(x,\eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$ such that $|\phi(x,\eta)| \leq k$.

Consider the following mapping $\mathcal{T}: \mathcal{M}_k \to \mathcal{M}_k$,

$$\phi \mapsto \frac{1}{\eta^p} \int_{x_0}^{x} e^{\frac{2}{p} \left(\frac{x^p}{\eta^p} - \frac{\xi^p}{\eta^p}\right)} F^+(\phi(\xi, \eta)) d\xi.$$

$$\eta^{p} \frac{d\phi}{dx}^{+} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

Let \mathcal{M}_k be the set of holomorphic functions $\phi(x,\eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$ such that $|\phi(x,\eta)| \leq k$.

Consider the following mapping $\mathcal{T}: \mathcal{M}_k \to \mathcal{M}_k$,

$$\phi \mapsto \frac{1}{\eta^p} \int_{x_0}^{x} e^{\frac{2}{p} \left(\frac{x^p}{\eta^p} - \frac{\xi^p}{\eta^p} \right)} F^+(\phi(\xi, \eta)) d\xi.$$

ullet existence of ϕ^+

$$\eta^{p} \frac{d\phi}{dx}^{+} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

Let \mathcal{M}_k be the set of holomorphic functions $\phi(x,\eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$ such that $|\phi(x,\eta)| \leq k$.

Consider the following mapping $\mathcal{T}: \mathcal{M}_k \to \mathcal{M}_k$,

$$\phi \mapsto \frac{1}{\eta^p} \int_{x_0}^{x} e^{\frac{2}{p} \left(\frac{x^p}{\eta^p} - \frac{\xi^p}{\eta^p} \right)} F^+(\phi(\xi, \eta)) d\xi.$$

- ullet existence of ϕ^+
- existence of $(\phi^+)^j_\ell$

$$\eta^{p} \frac{d\phi}{dx}^{+} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

Let \mathcal{M}_k be the set of holomorphic functions $\phi(x,\eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$ such that $|\phi(x,\eta)| \leq k$.

Consider the following mapping $\mathcal{T}: \mathcal{M}_k \to \mathcal{M}_k$,

$$\phi \mapsto \frac{1}{\eta^p} \int_{-\infty}^{X} e^{\frac{2}{p} \left(\frac{x^p}{\eta^p} - \frac{\xi^p}{\eta^p} \right)} F^+(\phi(\xi, \eta)) d\xi.$$

- \bullet existence of ϕ^+
- existence of $(\phi^+)^j_\ell$
- $(\phi^+)^j_{\ell}(x,\eta) \sim_{\frac{1}{n}} (\hat{\phi}^+)^j(x,\eta)$

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$

$$\downarrow \qquad \qquad y = T(x)u$$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u$

$$\downarrow \qquad \qquad u = \Phi(x, \eta)v$$
(3) $\eta^p \frac{dv}{dx} = C(x, \eta)v$

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$

$$\downarrow \qquad \qquad y = T(x)u$$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u \qquad \qquad U = \Phi V$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad V$$
(3) $\eta^p \frac{dv}{dx} = C(x, \eta)v \qquad \qquad V$

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 $Y = T \Phi V$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow$$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u$ $U = \Phi V$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$
(3) $\eta^p \frac{dv}{dx} = C(x, \eta)v$ V

We deduce the form of a fundamental matrix solution of $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$:

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)},$$

We deduce the form of a fundamental matrix solution of $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$:

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)},$$

where

Q admits a CAsE of Gevrey order $\frac{1}{p}$,

We deduce the form of a fundamental matrix solution of $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$:

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)},$$

where

Q admits a CAsE of Gevrey order $\frac{1}{p}$,

$$\Lambda(x,\eta) = \begin{pmatrix} -\frac{1}{\rho} \frac{x^{p}}{\eta^{p}} + R_{1}(\varepsilon) \log x & 0 \\ 0 & \frac{1}{\rho} \frac{x^{p}}{\eta^{p}} + R_{2}(\varepsilon) \log x \end{pmatrix}.$$

Theorem. For all $r \in]0, r_0[$, there exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

$$Q(x,\eta) = L(x,\varepsilon) \cdot R(x,\eta),$$

Theorem. For all $r \in]0, r_0[$, there exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

$$Q(x,\eta) = L(x,\varepsilon) \cdot R(x,\eta),$$

$$L(x,arepsilon) \sim_1 \sum_{n \geq 0} A_n(x) arepsilon^n \quad \text{as } arepsilon o 0 \ \text{in } ilde{S} \ ext{and} \ |x| < r,$$

Theorem. For all $r \in]0, r_0[$, there exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that :

$$Q(x,\eta) = L(x,\varepsilon) \cdot R(x,\eta),$$

$$L(x, \varepsilon) \sim_1 \sum_{n \geq 0} A_n(x) \varepsilon^n$$
 as $\varepsilon \to 0$ in \tilde{S} and $|x| < r$,

and

$$R(x,\eta)\sim_{\frac{1}{p}}\sum_{n\geq 0}G_n(\frac{x}{\eta})\eta^n$$
 as $\eta\to 0$ in S and $x\in V(\eta),$

$$G_n(\mathbf{X}) \sim_{rac{1}{p}} \sum_{m>0} G_{nm} \mathbf{X}^{-m} \quad \text{as } \mathbf{X} o \infty \ \text{in } V.$$

As $Q = L \cdot R$, we have

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\varepsilon)},$$

$$= \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} L(x,\varepsilon) \begin{pmatrix} 1 & 0 \\ 0 & x^{-\gamma} \end{pmatrix}}_{P(x,\varepsilon)} \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\varepsilon)}.$$

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\varepsilon)},$$

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\varepsilon)},$$

where

P is a slow matrix, i.e.

$$P(x,\varepsilon) \sim_1 \sum_{n \geq 0} A_n(x) \varepsilon^n$$
 as $\tilde{S} \ni \varepsilon \to 0, |x| < r$,

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\varepsilon)},$$

where

P is a slow matrix, i.e.

$$P(x, \varepsilon) \sim_1 \sum_{n \geq 0} A_n(x) \varepsilon^n$$
 as $\tilde{S} \ni \varepsilon \to 0, \ |x| < r,$

R is a fast matrix, i.e.

$$R(x,\eta)\sim_{\frac{1}{p}}\sum_{n\geq 0}G_n(\frac{x}{\eta})\eta^n$$
 as $S\ni\eta\to 0,\ x\in V(\eta),$

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\varepsilon)},$$

where

P is a slow matrix, i.e.

$$P(x,\varepsilon) \sim_1 \sum_{n>0} A_n(x) \varepsilon^n$$
 as $\tilde{S} \ni \varepsilon \to 0, |x| < r$,

R is a fast matrix, i.e.

$$R(x,\eta)\sim_{\frac{1}{p}}\sum_{n>0}G_n(\frac{x}{\eta})\eta^n$$
 as $S\ni\eta\to0,\;x\in V(\eta),$

 Λ is a diagonal matrix.

Analytic simplification

Analytic simplification

Proposition. The change of variables $y = P(x, \varepsilon)w$ reduces the differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ to

$$\varepsilon \frac{dw}{dx} = D(x, \varepsilon)w,$$

where $D(x,\varepsilon) \sim_1 \hat{D}(x,\varepsilon)$,

$$\hat{D}(x,\varepsilon) = \begin{pmatrix} \hat{d}_{11}(x,\varepsilon) & \hat{d}_{12}(x,\varepsilon) \\ \hat{d}_{21}(x,\varepsilon) & -\hat{d}_{11}(x,\varepsilon) \end{pmatrix},$$

and the \hat{d}_{ij} are polynomials in x such that

$$\deg_{\mathbf{x}} \hat{d}_{11} \leq \mu + \gamma, \quad \deg_{\mathbf{x}} \hat{d}_{12} = \mu \quad \text{and} \quad \deg_{\mathbf{x}} \hat{d}_{21} = \mu + 2\gamma.$$

Analytic simplification Proof of the proposition

Proof. On the one hand,

$$D = P^{-1}AP - \varepsilon P^{-1}P'$$

and

$$D(x,\varepsilon) \sim_1 \hat{D}(x,\varepsilon),$$

as $\varepsilon \to 0$ in \tilde{S} and |x| < r.

Analytic simplification Proof of the proposition

Proof. On the one hand,

$$D = P^{-1}AP - \varepsilon P^{-1}P'$$

and

$$D(x,\varepsilon) \sim_1 \hat{D}(x,\varepsilon),$$

as $\varepsilon \to 0$ in \tilde{S} and |x| < r.

On the other hand, $W(x,\eta)=\begin{pmatrix}1&0\\0&x^\gamma\end{pmatrix}R(x,\eta)\mathrm{e}^{\Lambda(x,\eta)}$ is a fundamental matrix solution of equation $\varepsilon\frac{dw}{dx}=D(x,\varepsilon)w$ and

$$D(x,\varepsilon) = \varepsilon W'(x,\eta)W(x,\eta)^{-1}.$$

We deduce a bound for the degree of each entry of $\hat{D}(x,\varepsilon)$.

Analytic simplification Proof of the proposition

Proof. On the one hand,

$$D = P^{-1}AP - \varepsilon P^{-1}P'$$

and

$$D(x,\varepsilon) \sim_1 \hat{D}(x,\varepsilon),$$

as $\varepsilon \to 0$ in \tilde{S} and |x| < r.

On the other hand, $W(x,\eta)=\begin{pmatrix}1&0\\0&x^\gamma\end{pmatrix}R(x,\eta)\mathrm{e}^{\Lambda(x,\eta)}$ is a fundamental matrix solution of equation $\varepsilon\frac{dw}{dx}=D(x,\varepsilon)w$ and

$$D(x,\varepsilon) = \varepsilon W'(x,\eta)W(x,\eta)^{-1}.$$

We deduce a bound for the degree of each entry of $\hat{D}(x,\varepsilon)$.

Analytic simplification

Let
$$\tilde{D}=\left(egin{array}{cc} ilde{d}_{11} & ilde{d}_{12} \\ ilde{d}_{22} & - ilde{d}_{11} \end{array}
ight)$$
 be a matrix of polynomials in x such that

$$ilde{D}(x,arepsilon)\sim_1 \hat{D}(x,arepsilon)$$
 as $arepsilon o 0$ in $ilde{S}$

Analytic simplification

Let
$$ilde{D}=\left(egin{array}{cc} ilde{d}_{11} & ilde{d}_{12} \\ ilde{d}_{22} & - ilde{d}_{11} \end{array}
ight)$$
 be a matrix of polynomials in x such that

$$ilde{D}(x,arepsilon)\sim_1 \hat{D}(x,arepsilon)$$
 as $arepsilon o 0$ in $ilde{S}$

and

$$\deg_{\mathbf{x}} \tilde{\mathbf{d}}_{11} \leq \mu + \gamma, \quad \deg_{\mathbf{x}} \tilde{\mathbf{d}}_{12} = \mu \quad \text{and} \quad \deg_{\mathbf{x}} \tilde{\mathbf{d}}_{21} = \mu + 2\gamma.$$

Analytic simplification

Let
$$ilde{D}=\left(egin{array}{cc} ilde{d}_{11} & ilde{d}_{12} \\ ilde{d}_{22} & - ilde{d}_{11} \end{array}
ight)$$
 be a matrix of polynomials in x such that

$$ilde{D}(x,arepsilon)\sim_1 \hat{D}(x,arepsilon)$$
 as $arepsilon o 0$ in $ilde{S}$

and

$$\deg_{\mathbf{x}} \tilde{\mathbf{d}}_{11} \leq \mu + \gamma, \quad \deg_{\mathbf{x}} \tilde{\mathbf{d}}_{12} = \mu \quad \text{and} \quad \deg_{\mathbf{x}} \tilde{\mathbf{d}}_{21} = \mu + 2\gamma.$$

Proposition. For all $r \in]0, r_0[$, there exists $\tilde{P}(x,\varepsilon)$, holomorphic and bounded on $D(0,r) \times \tilde{S}$, admitting an asymptotic expansion of Gevrey order 1, such that $\det P_0(x) \equiv 1$ and the change of variables $y = \tilde{P}(x,\varepsilon)w$ reduces the differential equation $\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y$ to

$$\varepsilon \frac{dw}{dx} = \tilde{D}(x, \varepsilon)w.$$

The main result (even case)

Theorem. If (C) is satisfied, then $\forall r \in]0, r_0[$, $\forall S, \exists T(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times S$ such that :

- $T(x,\varepsilon) \sim_1 \hat{T}(x,\varepsilon)$ as $\varepsilon \to 0$ in S and |x| < r,
- det $T_0(x) \equiv 1$,

•

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y \underset{y = T(x, \varepsilon)z}{\sim} \varepsilon \frac{dz}{dx} = B(x, \varepsilon)z$$

where

$$B(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} b_{11}(x,\varepsilon) & b_{12}(x,\varepsilon) \\ b_{21}(x,\varepsilon) & -b_{11}(x,\varepsilon) \end{pmatrix},$$

and the bij are polynomials in x such that

$$\deg_x b_{11} < \mu$$
, $\deg_x b_{12} < \mu$ and $\deg_x b_{21} < \mu + 2\gamma$.

Fundamental matrix solutio Slow-fast factorization Analytic simplification

Summability

Can we obtain a 1-summable simplification in the direction $\arg \varepsilon = 0$?

Can we obtain a 1-summable simplification in the direction arg $\varepsilon=0$?

Definition

Let $\hat{f}(\varepsilon) = \sum_{n \geq 0} f_n \varepsilon^n$ be a Gevrey-1 formal series.

We say that $\hat{f}(\varepsilon)$ is 1-summable in the direction $\arg \varepsilon = 0$ if there exist $\delta, \varepsilon_0 > 0$ and a holomorphic function $f(\varepsilon)$ on the sector $S = \left\{ \varepsilon \in \mathbb{C}, \ 0 < |\varepsilon| < \varepsilon_0 \ \text{and} \ |\arg \varepsilon| < \frac{\pi}{2} + \delta \right\}$ such that $f \sim_1 \hat{f}$.

The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$, where

$$A(x,\varepsilon) = \begin{pmatrix} \varepsilon \mathbf{a}(x,\varepsilon) & x^{\mu} + \varepsilon \mathbf{b}(x,\varepsilon) \\ x^{\mu+2\gamma} + \varepsilon \mathbf{c}(x,\varepsilon) & -\varepsilon \mathbf{a}(x,\varepsilon) \end{pmatrix},$$

is formally equivalent to $\varepsilon \frac{dz}{dx} = \hat{B}(x, \varepsilon)z$ via the formal change of variables $y = \hat{T}(x, \varepsilon)z$.

The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$, where

$$A(x,\varepsilon) = \begin{pmatrix} \varepsilon \mathbf{a}(x,\varepsilon) & x^{\mu} + \varepsilon \mathbf{b}(x,\varepsilon) \\ x^{\mu+2\gamma} + \varepsilon \mathbf{c}(x,\varepsilon) & -\varepsilon \mathbf{a}(x,\varepsilon) \end{pmatrix},$$

is formally equivalent to $\varepsilon \frac{dz}{dx} = \hat{B}(x, \varepsilon)z$ via the formal change of variables $y = \hat{T}(x, \varepsilon)z$.

The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$, where

$$A(x,\varepsilon) = \begin{pmatrix} \varepsilon \mathbf{a}(x,\varepsilon) & x^{\mu} + \varepsilon \mathbf{b}(x,\varepsilon) \\ x^{\mu+2\gamma} + \varepsilon \mathbf{c}(x,\varepsilon) & -\varepsilon \mathbf{a}(x,\varepsilon) \end{pmatrix},$$

is formally equivalent to $\varepsilon \frac{dz}{dx} = \hat{B}(x, \varepsilon)z$ via the formal change of variables $y = \hat{T}(x, \varepsilon)z$.

The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$, where

$$A(x,\varepsilon) = \begin{pmatrix} \varepsilon \mathbf{a}(x,\varepsilon) & x^{\mu} + \varepsilon \mathbf{b}(x,\varepsilon) \\ x^{\mu+2\gamma} + \varepsilon \mathbf{c}(x,\varepsilon) & -\varepsilon \mathbf{a}(x,\varepsilon) \end{pmatrix},$$

is formally equivalent to $\varepsilon \frac{dz}{dx} = \hat{B}(x, \varepsilon)z$ via the formal change of variables $y = \hat{T}(x, \varepsilon)z$.

Assumption A1 : $A(x,\varepsilon)$ is analytic on $\mathcal{D}\times D(0,\varepsilon_0)$.

The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$, where

$$A(x,\varepsilon) = \begin{pmatrix} \varepsilon \mathbf{a}(x,\varepsilon) & x^{\mu} + \varepsilon \mathbf{b}(x,\varepsilon) \\ x^{\mu+2\gamma} + \varepsilon \mathbf{c}(x,\varepsilon) & -\varepsilon \mathbf{a}(x,\varepsilon) \end{pmatrix},$$

is formally equivalent to $\varepsilon \frac{dz}{dx} = \hat{B}(x, \varepsilon)z$ via the formal change of variables $y = \hat{T}(x, \varepsilon)z$.

Assumption A1 : $A(x, \varepsilon)$ is analytic on $\mathcal{D} \times D(0, \varepsilon_0)$.

The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$, where

$$A(x,\varepsilon) = \begin{pmatrix} \varepsilon \mathbf{a}(x,\varepsilon) & x^{\mu} + \varepsilon \mathbf{b}(x,\varepsilon) \\ x^{\mu+2\gamma} + \varepsilon \mathbf{c}(x,\varepsilon) & -\varepsilon \mathbf{a}(x,\varepsilon) \end{pmatrix},$$

is formally equivalent to $\varepsilon \frac{dz}{dx} = \hat{B}(x, \varepsilon)z$ via the formal change of variables $y = \hat{T}(x, \varepsilon)z$.

Assumption A1 : $A(x,\varepsilon)$ is analytic on $\mathcal{D}\times D(0,\varepsilon_0)$.

Assumption A2:

$$\mathbf{a}(x,\varepsilon) = \mathcal{O}(x^{\mu+\gamma}), \quad \mathbf{b}(x,\varepsilon) = \mathcal{O}(x^{\mu}) \quad \text{and} \quad \mathbf{c}(x,\varepsilon) = \mathcal{O}(x^{\mu+2\gamma}).$$

The differential equation $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$, where

$$A(x,\varepsilon) = \begin{pmatrix} \varepsilon \mathbf{a}(x,\varepsilon) & x^{\mu} + \varepsilon \mathbf{b}(x,\varepsilon) \\ x^{\mu+2\gamma} + \varepsilon \mathbf{c}(x,\varepsilon) & -\varepsilon \mathbf{a}(x,\varepsilon) \end{pmatrix},$$

is formally equivalent to $\varepsilon \frac{dz}{dx} = \hat{B}(x, \varepsilon)z$ via the formal change of variables $y = \hat{T}(x, \varepsilon)z$.

Assumption A1 : $A(x,\varepsilon)$ is analytic on $\mathcal{D}\times D(0,\varepsilon_0)$.

Assumption A2:

$$\mathbf{a}(x,\varepsilon) = \mathcal{O}(x^{\mu+\gamma}), \quad \mathbf{b}(x,\varepsilon) = \mathcal{O}(x^{\mu}) \quad \text{and} \quad \mathbf{c}(x,\varepsilon) = \mathcal{O}(x^{\mu+2\gamma}).$$

Result. \hat{T} and \hat{B} are 1-summable in the direction $\arg \varepsilon = 0$.

Step 1 : Preparatory simplifications

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 where $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix}$,
$$\downarrow \qquad \qquad y = T(x)u$$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u$ where $B_0(x) = \begin{pmatrix} -x^{p-1} & 0 \\ 0 & x^{p-1} \end{pmatrix}$,
$$\downarrow \qquad \qquad u = \hat{\Phi}(x, \varepsilon)v$$
(3) $\varepsilon \frac{dv}{dx} = \hat{C}(x, \varepsilon)v$ where $\hat{C}(x, \varepsilon) = \begin{pmatrix} \star & 0 \\ 0 & \star \end{pmatrix}$.

Step 1 : Preparatory simplifications

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 where $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix}$,
$$\downarrow \qquad \qquad y = T(x)u$$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u$ where $B_0(x) = \begin{pmatrix} -x^{p-1} & 0 \\ 0 & x^{p-1} \end{pmatrix}$,
$$\downarrow \qquad \qquad u = \hat{\Phi}(x, \varepsilon)v$$
(3) $\varepsilon \frac{dv}{dx} = \hat{C}(x, \varepsilon)v$ where $\hat{C}(x, \varepsilon) = \begin{pmatrix} \star & 0 \\ 0 & \star \end{pmatrix}$.

Proposition. $\hat{\Phi}$ is 1-summable in the direction $\arg \varepsilon = 0$.

Proof.

$$\hat{\Phi} = \left(egin{array}{cc} 1 & \hat{\phi}^- \ \hat{\phi}^+ & 1 \end{array}
ight)$$

The formal series $\hat{\phi}^+$ is the unique formal solution of

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon).$$

Proof.

$$\hat{\Phi} = \left(egin{array}{cc} 1 & \hat{\phi}^- \ \hat{\phi}^+ & 1 \end{array}
ight)$$

The formal series $\hat{\phi}^+$ is the unique formal solution of

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon).$$

Assumption A2 $\Longrightarrow P(x, \phi, \varepsilon) = \mathcal{O}(x^{p-1}).$

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

For a fixed x_0 , consider the set of holomorphic and bounded functions on $M_{x_0} \times S_0$, where

$$S_0 = \left\{ arepsilon \in \mathbb{C}, \; 0 < |arepsilon| < arepsilon_0 \; ext{and} \; |rg arepsilon| < rac{\pi}{2} - \delta
ight\}$$

and

Figure: M_{x_0}

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

We apply the Banach fixed point theorem to the equation

$$\phi = \mathcal{T}\phi, \quad (\mathcal{T}\phi)(x,\varepsilon) = \frac{1}{\varepsilon} \int_{-\infty}^{x} e^{\frac{2}{p\varepsilon}(x^p - t^p)} P(t,\phi(t,\varepsilon),\varepsilon) dt.$$

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

We apply the Banach fixed point theorem to the equation

$$\phi = \mathcal{T}\phi, \quad (\mathcal{T}\phi)(x,\varepsilon) = \frac{1}{\varepsilon} \int_{\infty}^{x} e^{\frac{2}{p\varepsilon}(x^{p} - t^{p})} P(t,\phi(t,\varepsilon),\varepsilon) dt.$$

Its solution ϕ^+ admits a Gevrey-1 asymptotic expansion :

$$\phi^+(x,\varepsilon)\sim \hat{\phi}^+(x,\varepsilon)$$
 as $S_0\ni \varepsilon\to 0$, uniformly on M_{x_0} .

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

Figure: M_{ξ} in dark grey

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

Combining the solutions of the analogous fixed point equation, we obtain an analytic function

$$\phi^+: M_{x_0} \times S \to \mathbb{C},$$

where

$$S = \left\{ arepsilon \in \mathbb{C}, \; 0 < |arepsilon| < arepsilon_0 \; ext{and} \; |rg arepsilon| < rac{\pi}{2} + \delta
ight\}$$

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

Combining the solutions of the analogous fixed point equation, we obtain an analytic function

$$\phi^+: M_{x_0} \times S \to \mathbb{C},$$

where

$$S = \left\{ \varepsilon \in \mathbb{C}, \ 0 < |\varepsilon| < \varepsilon_0 \ \text{and} \ |\arg \varepsilon| < \frac{\pi}{2} + \delta \right\}$$

and

$$\phi^+(x,\varepsilon)\sim_1 \hat{\phi}^+(x,\varepsilon)$$
 as $S\ni\varepsilon\to 0$, uniformly on M_{x_0} .

$$\varepsilon \phi' = 2x^{p-1}\phi + \varepsilon P(x, \phi, \varepsilon)$$

Combining the solutions of the analogous fixed point equation, we obtain an analytic function

$$\phi^+: M_{x_0} \times S \to \mathbb{C},$$

where

$$S = \left\{ \varepsilon \in \mathbb{C}, \ 0 < |\varepsilon| < \varepsilon_0 \ \text{and} \ |\arg \varepsilon| < \frac{\pi}{2} + \delta \right\}$$

and

$$\phi^+(x,\varepsilon)\sim_1 \hat{\phi}^+(x,\varepsilon) \quad \text{as } S\ni\varepsilon\to 0, \text{ uniformly on } M_{x_0}.$$

Therefore $\hat{\Phi}$ is 1-summable in the direction $\arg \varepsilon = 0$.

End of the proof

- Preparation of equation (1)
- Fundamental matrix solution
- 3 1-summable slow fast factorization
- Simplification

Introduction and results Gevrey theory of CAsEs Proof of the main result Summability

Definition Assumptions Idea of the proof