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Consider the di�erential equation

ε2
d2y

dx2
− Q(x)y = 0,

where

ε > 0, ε→ 0,

x ∈ [a, b],

Q : [a, b]→ R of class C 1.

Example

The Schrödinger equation (1925) :

d2y

dx2
− 2m

~2
(V (x)− E )y = 0.

Here ~ plays the role of ε and Q(x) = 2m(V (x)− E ).
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Liouville-Green (1837)

ε2
d2y

dx2
− Q(x)y = 0 (1)

If Q(x) > 0,

φ±(x , ε) = Q(x)−
1
4 exp

(
±1
ε

ˆ x√
Q(ξ)dξ

)
. (2)

If Q(x) < 0,

ψ±(x , ε) = (−Q(x))−
1
4 exp

(
± i

ε

ˆ x√
−Q(ξ)dξ

)
. (3)

At a zero of Q, the functions (2) and (3) are not approximations of

the solutions anymore.
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Turning point

The zeros of Q separate regions with oscillating behavior from

regions with exponential behavior.
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Turning point

The zeros of Q(x) separate regions with oscillating behavior from

regions with exponential behavior.

De�nition

The zeros of Q are called turning points.



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Summability

The Liouville-Green approximation
Mathematical background
Theorems of simpli�cation

Mathematical background

Consider the di�erential equation

ε
dy

dx
= A(x , ε)y , (1)

where

x is a complex variable,

ε is a small complex parameter,

A is a 2× 2 matrix of holomorphic and bounded functions on

D(0, r0)× D(0, ε0).

The case �A(0, 0) admits two distinct eigenvalues� is well known.

Otherwise the point x = 0 is a turning point for equation (1).
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Mathematical background

ε
dy

dx
= A(x , ε)y , (1)

Let A0(x) be the matrix A(x , 0).

We assume that :

A0(0) admits a unique eigenvalue 0,

trA(x , ε) ≡ 0,

det A0(x) 6≡ 0.

In this case A0(x) admits two distinct eigenvalues when x 6= 0,

which are equal at x = 0.
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Assumptions

We can reduce the study to di�erential equations of this form

ε
dy

dx
= A(x , ε)y ,

where

trA(x , ε) ≡ 0,

A0(x) =

(
0 xµ

xµ+ν 0

)
, with µ, ν ∈ N and µ+ ν 6= 0.



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Summability

The Liouville-Green approximation
Mathematical background
Theorems of simpli�cation

Condition (C)

We consider a di�erential equation

ε
dy

dx
= A(x , ε)y ,

where

A(x , ε) =

(
0 xµ

xµ+ν 0

)
+ ε

(
a(x , ε) b(x , ε)
c(x , ε) −a(x , ε)

)
.
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Condition (C)

We consider a di�erential equation

ε
dy

dx
= A(x , ε)y ,

where

A(x , ε) =

(
0 xµ

xµ+ν 0

)
+ ε

(
a(x , ε) b(x , ε)
c(x , ε) −a(x , ε)

)
.

Condition (C):

1 ν is even and c(x , 0) = O(x
1
2

(ν−2)),

2 ν is odd and c(x , 0) = O(x
1
2

(ν−1)).
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T̂ (x , ε) =
∑
n≥0

Tn(x)εn
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Theorem. There exists a formal power series

T̂ (x , ε) =
∑
n≥0

Tn(x)εn

such that detT0(x) ≡ 1 and

ε
dy

dx
= A(x , ε)y ∼

y=T̂ (x,ε)z
ε
dz

dx
= B̂(x , ε)z
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B̂(x , ε) = A0(x) + ε

(
b̂11(x , ε) b̂12(x , ε)

b̂21(x , ε) b̂22(x , ε)

)
and the b̂ij are polynomials in x :

degx b̂11 < µ, degx b̂12 < µ, degx b̂21 < µ+ν and degx b̂22 < µ.



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Summability

The Liouville-Green approximation
Mathematical background
Theorems of simpli�cation

Hanson & Russell (1967)

Theorem. There exists a formal power series

T̂ (x , ε) =
∑
n≥0

Tn(x)εn

such that detT0(x) ≡ 1 and

ε
dy

dx
= A(x , ε)y ∼

y=T̂ (x,ε)z
ε
dz

dx
= B̂(x , ε)z

where

B̂(x , ε) = A0(x) + ε

(
b̂11(x , ε) b̂12(x , ε)

b̂21(x , ε) b̂22(x , ε)

)
and the b̂ij are polynomials in x :

degx b̂11 < µ, degx b̂12 < µ, degx b̂21 < µ+ν and degx b̂22 < µ.



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Summability

The Liouville-Green approximation
Mathematical background
Theorems of simpli�cation

Main result

Theorem. If (C) is satis�ed,



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Summability

The Liouville-Green approximation
Mathematical background
Theorems of simpli�cation

Main result

Theorem. If (C) is satis�ed,



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Summability

The Liouville-Green approximation
Mathematical background
Theorems of simpli�cation

Main result

Theorem. If (C) is satis�ed, then ∀r ∈]0, r0[, ∀S ,



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Summability

The Liouville-Green approximation
Mathematical background
Theorems of simpli�cation

Main result

Theorem. If (C) is satis�ed, then ∀r ∈]0, r0[, ∀S , ∃T (x , ε)
holomorphic and bounded on D(0, r)× S such that :

T (x , ε) ∼1 T̂ (x , ε) as S 3 ε→ 0, uniformly on D(0, r),

detT0(x) ≡ 1,

ε
dy

dx
= A(x , ε)y ∼

y=T (x,ε)z
ε
dz

dx
= B(x , ε)z

where

B(x , ε) = A0(x) + ε

(
b11(x , ε) b12(x , ε)
b21(x , ε) −b11(x , ε)

)
and the bij are polynomials in x :

degx b11 < µ, degx b12 < µ and degx b21 < µ+ ν.
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Known results

ε
dy

dx
= A(x , ε)y and A0(x) =

(
0 xµ

xµ+ν 0

)
.

The case µ = 0 is well known :

Wasow treated the case A0(x) =

(
0 1

x 0

)
in 1965,

Lee treated the case A0(x) =

(
0 1

x2 0

)
in 1969,

Sibuya treated the case A0(x) =

(
0 1

xν 0

)
, ν ∈ N?, in 1974.
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Notations

Let

S = {η ∈ C, 0 < |η| < η0 and α0 < arg η < β0},
V (η) = {x ∈ C, ρ|η| < |x | < r and α′ < arg x < β′} ,
V = {X ∈ C, ρ < |X| and α < argX < β} .

We call (P) the following property :

If η ∈ S and x ∈ V (η), then X = x
η ∈ V .
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Formal composite series

De�nition

A formal composite series associated to V and D(0, r) is a series of

this form

ŷ(x , η) =
∑
n≥0

(
an(x) + gn( xη )

)
ηn

such that ∀n ∈ N,
an is holomorphic and bounded on D(0, r),
gn is holomorphic and bounded on V and

gn(X) ∼
∑
m>0

gnmX
−m, as V 3 X→∞.

The series
∑
n≥0

an(x)ηn is called the slow part of ŷ(x , η).

The series
∑
n≥0

gn( x
η

)ηn is called the fast part of ŷ(x , η).
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Composite asymptotic expansion (CAsE)

Let y(x , η) be holomorphic and bounded for η ∈ S and for

x ∈ V (η), and let

ŷ(x , η) =
∑
n≥0

(
an(x) + gn( x

η
)
)
ηn

be a formal composite series.

De�nition

We say that y admits ŷ as composite asymptotic expansion

(CAsE), as η → 0 in S and x ∈ V (η), if ∀N ∈ N, ∃KN > 0,∣∣∣∣∣y(x , η)−
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ŷ(x , η) =
∑
n≥0

(
an(x) + gn( x

η
)
)
ηn

be a formal composite series.

De�nition
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Gevrey CAsE

De�nition

We say that y admits ŷ as CAsE of Gevrey order 1

p
, as η → 0 in S

and x ∈ V (η), if ∃C , L > 0, ∀N ∈ N,∣∣∣∣∣y(x , η)−
N−1∑
n=0

(
an(x) + gn( x

η
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ηn

∣∣∣∣∣ ≤ CLNΓ(N
p

+ 1)|η|N ,

for all η ∈ S and all x ∈ V (η) and

gn(X) ∼ 1
p

∑
m>0

gnmX
−m, as V 3 X→∞.

Notation: y(x , η) ∼ 1
p
ŷ(x , η), as η → 0 in S and x ∈ V (η).
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Consistent good covering

A consistent good covering (c.g.c.) is a collection S`,V
j ,V j

` (η),
` = 1, . . . , L, j = 1, . . . , J, such that

(S`)` is a good covering of D(0, η0)?,
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A consistent good covering (c.g.c.) is a collection S`,V
j ,V j

` (η),
` = 1, . . . , L, j = 1, . . . , J, such that

(S`)` is a good covering of D(0, η0)?,

(V j)j is a good covering of {X ∈ C, |X| > ρ},
for all η ∈ S`,
(V j

` (η))j is a consistent good covering of

{x ∈ C, ρ|η| < |x | < r},
if η ∈ S` and x ∈ V

j
` (η), then x

η ∈ V j .
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Theorem of Fruchard-Schäfke
A theorem of Ramis-Sibuya type

Let S`,V
j ,V j

` (η), ` = 1, . . . , L, j = 1, . . . , J, be a consistent good

covering.

Let
(
y
j
`(x , η)

)
j ,`

be a collection of holomorphic and bounded

functions de�ned for η ∈ S` and x ∈ V
j
` (η).
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If ∣∣∣(y j`+1
− y

j
`

)
(x , η)

∣∣∣ = O
(
e
− A
|η|p
)
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Theorem of Fruchard-Schäfke
A theorem of Ramis-Sibuya type

If ∣∣∣(y j`+1
− y

j
`

)
(x , η)

∣∣∣ = O
(
e
− A
|η|p
)

and ∣∣∣(y j+1

` − y
j
`

)
(x , η)

∣∣∣ = O
(
e
−B

∣∣∣ xη ∣∣∣p),
then

y
j
`(x , η) ∼ 1

p

∑
n≥0

(
an(x) + g jn( xη )

)
ηn,

g jn(X) ∼ 1
p

∑
m>0

gnmX
−m, as V j 3 X→∞.
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Assume that ν is even : ν = 2γ.

We consider a di�erential equation

ε
dy

dx
= A(x , ε)y ,

where

A(x , ε) =

(
0 xµ

xµ+2γ 0

)
+ ε

(
a(x , ε) b(x , ε)
c(x , ε) −a(x , ε)

)
.

In this case, the condition (C) becomes c(x , 0) = O(xγ−1).
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Fundamental matrix solution

Proposition. The di�erential equation εdy
dx

= A(x , ε)y has a

fundamental matrix solution of the form

Y (x , η) =

(
1 0

0 xγ

)
Q(x , η)eΛ(x ,η)

where

η is a root of ε, ε = ηp, with p = µ+ γ + 1,
Q admits a CAsE of Gevrey order 1

p
,

Λ is a diagonal matrix.
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Fundamental matrix solution
Preparation of equation (1)

(1) εdy
dx

= A(x , ε)y where A0(x) =

(
0 xµ

xµ+2γ 0

)
,

↓ y = T (x)u

(2) εdu
dx

= B(x , ε)u where B0(x) =

(
−xp−1 0

0 xp−1

)
,

↓ u = Φ(x , η)v and ε = ηp

(3) ηp dv
dx

= C (x , η)v where C (x , η) =

(
? 0

0 ?

)
.
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Fundamental matrix solution
Existence of Φ

We now make the second change of variables explicit:

u = Φv and ε = ηp.

The matrix Φ is as follows :

Φ =

(
1 φ−

φ+ 1

)
.

The function φ+, resp. φ−, satis�es a Riccati equation :

ηp
dφ

dx
= ±2xp−1φ+ F±(φ)(x , η).
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Fundamental matrix solution
Existence of φ+

ηp
dφ

dx

+

= 2xp−1φ+ + F+(φ+)

LetMk be the set of holomorphic functions φ(x , η) de�ned for

η ∈ S and x ∈ Ω(η) such that |φ(x , η)| ≤ k .
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ηp
dφ

dx

+

= 2xp−1φ+ + F+(φ+)

LetMk be the set of holomorphic functions φ(x , η) de�ned for

η ∈ S and x ∈ Ω(η) such that |φ(x , η)| ≤ k .

Consider the following mapping T : Mk→Mk ,

φ 7→ 1

ηp

ˆ x

x0

e
2
p

(
xp

ηp
− ξ

p

ηp

)
F+(φ(ξ, η)) dξ.

existence of φ+
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Fundamental matrix solution
Summary

(1) εdy
dx

= A(x , ε)y

↓ y = T (x)u

(2) εdu
dx

= B(x , ε)u

↓ u = Φ(x , η)v

(3) ηp dv
dx

= C (x , η)v
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Summary

(1) εdy
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↓ y = T (x)u

(2) εdu
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Fundamental matrix solution

We deduce the form of a fundamental matrix solution of

εdy
dx

= A(x , ε)y :

Y (x , η) =

(
1 0

0 xγ

)
Q(x , η)eΛ(x ,η),

where

Q admits a CAsE of Gevrey order 1

p
,

Λ(x , η) =

(
− 1

p
xp

ηp + R1(ε) log x 0

0 1

p
xp

ηp + R2(ε) log x

)
.
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0 1

p
xp

ηp + R2(ε) log x

)
.



Introduction and results
Gevrey theory of CAsEs
Proof of the main result

Summability

Fundamental matrix solution
Slow-fast factorization
Analytic simpli�cation

Slow-fast factorization

Theorem. For all r ∈]0, r0[, there exist L(x , ε) holomorphic and

bounded on D(0, r)× S̃ and R(x , η) holomorphic and bounded for

η ∈ S, x ∈ V (η), such that :

Q(x , η) = L(x , ε) · R(x , η),

L(x , ε) ∼1

∑
n≥0

An(x)εn as ε→ 0 in S̃ and |x | < r ,

and

R(x , η) ∼ 1
p

∑
n≥0 Gn( xη )ηn as η → 0 in S and x ∈ V (η),

Gn(X) ∼ 1
p

∑
m≥0

GnmX
−m as X→∞ in V .
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Slow-fast factorization
Preparation of Y

As Q = L · R, we have

Y (x , η) =

(
1 0

0 xγ

)
Q(x , η)eΛ(x ,ε),

=

(
1 0

0 xγ

)
L(x , ε)

(
1 0

0 x−γ

)
︸ ︷︷ ︸

P(x , ε)

(
1 0

0 xγ

)
R(x , η)eΛ(x ,ε).
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Slow-fast factorization
Preparation of Y

The matrix Y (x , η) can be written

Y (x , η) = P(x , ε)

(
1 0

0 xγ

)
R(x , η)eΛ(x ,ε),

where

P is a slow matrix, i.e.

P(x , ε) ∼1

∑
n≥0

An(x)εn as S̃ 3 ε→ 0, |x | < r ,

R is a fast matrix, i.e.

R(x , η) ∼ 1
p

∑
n≥0

Gn( xη )ηn as S 3 η → 0, x ∈ V (η),

Λ is a diagonal matrix.
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Analytic simpli�cation

Proposition. The change of variables y = P(x , ε)w reduces the

di�erential equation εdy
dx

= A(x , ε)y to

ε
dw

dx
= D(x , ε)w ,

where D(x , ε) ∼1 D̂(x , ε),

D̂(x , ε) =

(
d̂11(x , ε) d̂12(x , ε)

d̂21(x , ε) −d̂11(x , ε)

)
,

and the d̂ij are polynomials in x such that

degx d̂11 ≤ µ+ γ, degx d̂12 = µ and degx d̂21 = µ+ 2γ.
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Analytic simpli�cation
Proof of the proposition

Proof. On the one hand,

D = P−1AP − εP−1P ′

and

D(x , ε) ∼1 D̂(x , ε),

as ε→ 0 in S̃ and |x | < r .

On the other hand, W (x , η) =

(
1 0

0 xγ

)
R(x , η)eΛ(x ,η) is a

fundamental matrix solution of equation εdw
dx

= D(x , ε)w and

D(x , ε) = εW ′(x , η)W (x , η)−1.

We deduce a bound for the degree of each entry of D̂(x , ε).
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Let D̃ =

(
d̃11 d̃12
d̃22 −d̃11

)
be a matrix of polynomials in x such that

D̃(x , ε) ∼1 D̂(x , ε) as ε→ 0 in S̃

and

degx d̃11 ≤ µ+ γ, degx d̃12 = µ and degx d̃21 = µ+ 2γ.

Proposition. For all r ∈]0, r0[, there exists P̃(x , ε), holomorphic
and bounded on D(0, r)× S̃ , admitting an asymptotic expansion of

Gevrey order 1, such that detP0(x) ≡ 1 and the change of variables

y = P̃(x , ε)w reduces the di�erential equation εdy
dx

= A(x , ε)y to

ε
dw

dx
= D̃(x , ε)w .
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The main result (even case)

Theorem. If (C) is satis�ed, then ∀r ∈]0, r0[ , ∀S, ∃T (x , ε)
holomorphic and bounded on D(0, r)× S such that :

T (x , ε) ∼1 T̂ (x , ε) as ε→ 0 in S and |x | < r ,

detT0(x) ≡ 1,

ε
dy

dx
= A(x , ε)y ∼

y=T (x,ε)z
ε
dz

dx
= B(x , ε)z

where

B(x , ε) =

(
0 xµ

xµ+2γ 0

)
+ ε

(
b11(x , ε) b12(x , ε)
b21(x , ε) −b11(x , ε)

)
,

and the bij are polynomials in x such that

degx b11 < µ, degx b12 < µ and degx b21 < µ+ 2γ.
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Summability

Can we obtain a 1-summable simpli�cation in the direction

arg ε = 0 ?

De�nition

Let f̂ (ε) =
∑

n≥0 fnε
n be a Gevrey-1 formal series.

We say that f̂ (ε) is 1-summable in the direction arg ε = 0 if there

exist δ, ε0 > 0 and a holomorphic function f (ε) on the sector

S =
{
ε ∈ C, 0 < |ε| < ε0 and | arg ε| < π

2
+ δ
}
such that f ∼1 f̂ .
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The di�erential equation εdy
dx

= A(x , ε)y , where

A(x , ε) =

(
εa(x , ε) xµ + εb(x , ε)

xµ+2γ + εc(x , ε) −εa(x , ε)

)
,

is formally equivalent to ε dz
dx

= B̂(x , ε)z via the formal change of

variables y = T̂ (x , ε)z .
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xµ+2γ + εc(x , ε) −εa(x , ε)

)
,

is formally equivalent to ε dz
dx

= B̂(x , ε)z via the formal change of

variables y = T̂ (x , ε)z .

Assumption A1 : A(x , ε) is analytic on D × D(0, ε0).
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Assumption A2 :

a(x , ε) = O(xµ+γ), b(x , ε) = O(xµ) and c(x , ε) = O(xµ+2γ).

Result. T̂ and B̂ are 1-summable in the direction arg ε = 0.
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Step 1 : Preparatory simpli�cations

(1) εdy
dx

= A(x , ε)y where A0(x) =

(
0 xµ

xµ+2γ 0

)
,

↓ y = T (x)u

(2) εdu
dx

= B(x , ε)u where B0(x) =

(
−xp−1 0

0 xp−1

)
,

↓ u = Φ̂(x , ε)v

(3) εdv
dx

= Ĉ (x , ε)v where Ĉ (x , ε) =

(
? 0

0 ?

)
.

Proposition. Φ̂ is 1-summable in the direction arg ε = 0.
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Proof.

Φ̂ =

(
1 φ̂−

φ̂+ 1

)

The formal series φ̂+ is the unique formal solution of

εφ′ = 2xp−1φ+ εP(x , φ, ε).

Assumption A2 =⇒ P(x , φ, ε) = O(xp−1).
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εφ′ = 2xp−1φ+ εP(x , φ, ε)

For a �xed x0, consider the set of holomorphic and bounded

functions on Mx0 × S0, where

S0 =
{
ε ∈ C, 0 < |ε| < ε0 and | arg ε| < π

2
− δ
}

and

Figure: Mx0
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εφ′ = 2xp−1φ+ εP(x , φ, ε)

We apply the Banach �xed point theorem to the equation

φ = T φ, (T φ)(x , ε) =
1

ε

ˆ x

∞
e

2
pε

(xp−tp)
P(t, φ(t, ε), ε) dt.

Its solution φ+ admits a Gevrey-1 asymptotic expansion :

φ+(x , ε) ∼ φ̂+(x , ε) as S0 3 ε→ 0, uniformly on Mx0.
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∞
e

2
pε

(xp−tp)
P(t, φ(t, ε), ε) dt.

Its solution φ+ admits a Gevrey-1 asymptotic expansion :

φ+(x , ε) ∼ φ̂+(x , ε) as S0 3 ε→ 0, uniformly on Mx0.
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εφ′ = 2xp−1φ+ εP(x , φ, ε)

Now proceed the same way for each ξ ∈ Mx0 .

Figure: Mξ in dark grey
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εφ′ = 2xp−1φ+ εP(x , φ, ε)

Now proceed the same way for each ξ ∈ Mx0 .

Combining the solutions of the analogous �xed point equation, we

obtain an analytic function

φ+ : Mx0 × S → C,

where

S =
{
ε ∈ C, 0 < |ε| < ε0 and | arg ε| < π

2
+ δ
}

and

φ+(x , ε) ∼1 φ̂
+(x , ε) as S 3 ε→ 0, uniformly on Mx0.

Therefore Φ̂ is 1-summable in the direction arg ε = 0.
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End of the proof

1 Preparation of equation (1)

2 Fundamental matrix solution

3 1-summable slow fast factorization

4 Simpli�cation
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