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Consider the differential equation

where
@ec>0¢—0,
® x € [a, b],
e @:[a,b] — R of class C.



where
0ec>0e—0,
@ x € [a, b],
® Q:[ab] = R of class C.

Example
The Schrédinger equation (1925) :

d’y 2m
- ﬁ(V(X) —E)y=0.

Here & plays the role of ¢ and Q(x) = 2m(V(x) — E).
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292 Q=0 (1)

If Q(x)
)= Qe oo (£ [ V@) (@

If Q(x)
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If Q(x) > 0
6+ (x,£) = Qx) 4exp< /\/7d5>
If Q(x) < 0
) = () e (£ [ Vo0@).

(2)

(3)

At a zero of @, the functions (2) and (3) are not approximations of

the solutions anymore.
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The Liouville-Green approximation
Mathematical background
Theorems of simplification

Turning point

The zeros of Q(x) separate regions with oscillating behavior from
regions with exponential behavior.

Definition

The zeros of Q are called turning points.
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Consider the differential equation

dy
Y~ Ay, 1)

where
@ x is a complex variable,
@ ¢ is a small complex parameter,

@ Ais a 2 x 2 matrix of holomorphic and bounded functions on
D(0,rp) x D(0,¢eq).
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Mathematical background

Consider the differential equation

dy

L~ Ay, (1)
where
@ x is a complex variable,
@ ¢ is a small complex parameter,
@ Ais a 2 x 2 matrix of holomorphic and bounded functions on
D(0,rp) x D(0,¢eq).

The case «A(0,0) admits two distinct eigenvalues» is well known.
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Mathematical background

Consider the differential equation

dy

= A(x,¢e 1
L~ Ay, (1)
where

@ x is a complex variable,
@ ¢ is a small complex parameter,
@ Ais a 2 x 2 matrix of holomorphic and bounded functions on
D(0,rp) x D(0,¢eq).
The case «A(0,0) admits two distinct eigenvalues» is well known.

Otherwise the point x = 0 is a turning point for equation (1).
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dy
“dx
Let Ag(x) be the matrix A(x,0).

= A(x,¢e)y,
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dy
5& —A(X,S)y, (1)

Let Ag(x) be the matrix A(x,0).

We assume that :
@ Ag(0) admits a unique eigenvalue 0,
o trA(x,e) =0,
e det Ag(x) # 0.
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dy
5& —A(X,S)y, (1)

Let Ag(x) be the matrix A(x,0).

We assume that :
@ Ag(0) admits a unique eigenvalue 0,
o trA(x,e) =0,
e det Ag(x) # 0.

In this case Ag(x) admits two distinct eigenvalues when x # 0,
which are equal at x = 0.
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Assumptions

We can reduce the study to differential equations of this form

dy

=A
dX (X7 E‘).)'/7

e Ao(x < v ),withu,uENand,u—l—u;éO.
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We consider a differential equation

dy _

ng - A(X,€)y,

where

= (S Y9 ).
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Condition (C)

We consider a differential equation

dy _

ng - A(X,E)y,

= (S Y9 ).

Condition (C):
Q v is even and ¢(x,0) = (f)(xé(u—z))7
@ v is odd and ¢c(x,0) = O(X%(V—l))'
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Theorem. There exists a formal power series
T(x,e) =) Ta(x)e"
n>0
such that det To(x) =1 and

dy dz .
¢ dX (X’ 8))/ y=T(x,e)z ¢ dX (X’ 8)2
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Hanson & Russell (1967)

Theorem. There exists a formal power series

T(x,e) =) Ta(x)e"

n>0
such that det To(x) =1 and
Q_A(X,S)y ~ 5£:B(X,€)Z

¢ dX - y=T(x,e)z dX
where A A
S b11(X, 6) b12(X,5)
B(x,e) = Ao(x)+¢| =« PN
() = Aolx) ( bai(x,€)  boa(x,¢)

and the i’ij are polynomials in x :
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Hanson & Russell (1967)

Theorem. There exists a formal power series

T(x,e) =) Ta(x)e"

n>0
such that det To(x) =1 and
sﬂ = A(x,¢e)y ~ 5£ = B(x,¢)z
dx ’ y=T(xe)z  dX ’

where A
é(x,e):Ao(x)—i—E ( 2 P

and the i’ij are polynomials in x :

deg, 1311 < p, deg, 1312 <p, deg, 1321 < p+v and deg, 1322 < [
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Main result

Theorem. If (C) is satisfied, then Vr €]0, ry[, VS, 3T (x,¢)
holomorphic and bounded on D(0, r) x S such that :
o T(x,e) ~1 T(x,€) as S 3¢ — 0, uniformly on D(0, r),
e det To(x) =1,

°
dy dz
S A(x,e)y e Cd T B(x,¢e)z
where

B(x,€) = Ao(x) +€( Z;ig:g —blil(aa?) )

and the bj; are polynomials in x :

deg, b11 < p, deg, bip <p and deg, by < pu+ .
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5—X:A(X,5)y and  Ag(x) g

Il
/~
o
>
=
~
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The case 1 = 0 is well known :

X O

o Wasow treated the case Ap(x) = ( (1) > in 1965,

o

X

o Lee treated the case Ap(x) = ( 5 é ) in 1969,
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Known results

The case 1 = 0 is well known :

o Wasow treated the case Ap(x) = ( > in 1965,

1
0
) in 1969,

(1) >, v € N*, in 1974,

o Lee treated the case Ap(x) = ( 02 é

@ Sibuya treated the case Ag(x) = <
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Gevrey CAsEs

Gevrey theory of composite
asymptotic expansions
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Gevrey theory of CAsEs

Notations

Let
e S={neC,0<|n <mnand ag < argn < fo},

Bo

Qo
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Notations

Let
e S={neC,0<|n <mnand ag < argn < fo},
o V(n)={xeC, pln| <|x|] <rand o <argx < ('},

P
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Notations

Let

e S={neC,0<|n <mnand ag < argn < fo},
o V(n)={xeC, pln| <|x|] <rand o <argx < ('},
o V={XeC, p<|X|and a <argX < S}.

B
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Notations

Let

e S={neC,0<|n <mnand ag < argn < fo},
o V(n)={xeC, pln| <|x|] <rand o <argx < ('},
o V={XeC, p<|X|and a <argX < S}.

We call (P) the following property :

IfnGSandeV(n),thenX:;GV.
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Gevrey theory of CAsEs

Formal composite series

A formal composite series associated to V and D(0,r) is a series of

this form
g0x,m) =" (an(x) +&n(2)) 0"

n>0

such that Vn € N,
ap is holomorphic and bounded on D(0, r),
&n is holomorphic and bounded on V and

gn(x) ~ Z gnmxim, as V > X — OQ.

m>0
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Gevrey theory of CAsEs

Formal composite series

A formal composite series associated to V and D(0,r) is a series of

this form
g0x,m) =" (an(x) +&n(2)) 0"

n>0

such that Vn € N,
ap is holomorphic and bounded on D(0, r),
&n is holomorphic and bounded on V and

X) ~ Zg,,mX*'", as Vo> X — oo.

m>0

The series > "an(x)n" is called the slow part of y(x,7).

n>0

The series > "ga(%)n" is called the fast part of y(x,7).

n>0
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Gevrey theory of CAsEs

Composite asymptotic expansion (CAsE)

Let y(x,n) be holomorphic and bounded for n € S and for
x € V(n), and let

n>0

be a formal composite series.
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Composite asymptotic expansion (CAsE)

Let y(x,n) be holomorphic and bounded for n € S and for
x € V(n), and let

n>0
be a formal composite series.

Definition

We say that y admits y as composite asymptotic expansion
(CAsE), asn — 0in S and x € V(n), if VN € N, 3Ky > 0,

=
—

ym) = (an() +&n(2)) 1"

n

< KN|77’N>

I
o

forallm € S and all x € V(7).
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Gevrey CAsE

We say that y admits y as CAsE of Gevrey order %, asn—0in$S
and x € V(n), if 3C,L >0, VN € N,

=
i

y(m) = D (an(x) +&a(2)) 0" < CLYT (G + 1)nl",

3
Il
S}

forallp e S and all x € V() and

gn(X) ~1 Y gamX ™, as V3 X — oo

P
m>0
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Gevrey CAsE

We say that y admits y as CAsE of Gevrey order %, asn—0in$S
and x € V(n), if 3C,L >0, VN € N,

=
i

y(m) = D (an(x) +&a(2)) 0" < CLYT (G + 1)nl",

3
Il
S}

forallp e S and all x € V() and

gn(X) ~1 Y gamX ™, as V3 X — oo

m>0

Notation: y(x,n) ~1 ¥(x,n),asn —0in S and x € V().
P
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Consistent good covering

A consistent good covering (c.g.c.) is a collection S, V4, Vg(n),
£=1,...,L, j=1,...,J, such that

@ (5¢)¢ is a good covering of D(0,n9)*,
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Consistent good covering

A consistent good covering (c.g.c.) is a collection S, V4, Vi(n),
£=1,...,L, j=1,...,J, such that

@ (5/)¢ is a good covering of D(0,m9)*,

o (V) is a good covering of {X € C, |X| > p},
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Consistent good covering

A consistent good covering (c.g.c.) is a collection S, V4, Vi(n),
£=1,...,L, j=1,...,J, such that
@ (5/)¢ is a good covering of D(0,m9)*,
o (V) is a good covering of {X € C, |X| > p},
o foralln e S,
(VJ(n)); is a good covering of {x € C, pln| < |x| < r},
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Gevrey theory of CAsEs

Consistent good covering

A consistent good covering (c.g.c.) is a collection S, V4, Vg(n),
£=1,...,L, j=1,...,J, such that
@ (5/)¢ is a good covering of D(0,n9)*,
o (V) is a good covering of {X € C, |X| > p},
o foralln e S,
(VJ(n)); is a consistent good covering of
{xe€C, plnl <I|x| <r}
o ifne Syand x € Vg(n), then 7 € ZB
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Theorem of Fruchard-Schafke

A theorem of Ramis-Sibuya type

Let S;, VY, Vg(n), {=1,...,L, j=1,...,J, be a consistent good
covering.
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Theorem of Fruchard-Schafke

A theorem of Ramis-Sibuya type

Let S;, VY, Vg(n), {=1,...,L, j=1,...,J, be a consistent good
covering.
Let (yé(x,n))j

functions defined for n € Sy and x € VJ(n).

, be a collection of holomorphic and bounded
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Theorem of Fruchard-Schafke

A theorem of Ramis-Sibuya type

(va =) | =0 (&

A
7]|P)
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Gevrey theory of CAsEs

Theorem of Fruchard-Schafke

A theorem of Ramis-Sibuya type

and

then

vim) ~1 3 (anlx) + g4(3)) ",

P
n>0

g{;(X) ~1 E gnmx_m, as Vj 3 X = oo
P
m>0
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Assume that v is even : v = 2.
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Proof of the main result

Assume that v is even : v = 2.

We consider a differential equation

dy

— =A

where
= (5 7y ) (09 M9

In this case, the condition (C) becomes c(x,0) = O(x?71).
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Steps of the proof

@ Fundamental matrix solution
o Slow-fast factorization of a CAsE

@ Analytic simplification
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Fundamental matrix solution

Proposition. The differential equation 5% = A(x,¢e)y has a
fundamental matrix solution of the form

1 0
Y(x,n) = < 0 X ) Q(x, 77)e/\(x,77)
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Fundamental matrix solution

Proposition. The differential equation Ed = A(x,¢)y has a
fundamental matrix solution of the form

1 0
Y(x,n) = < 0 X ) Q(x, 77)e/\(x,77)

where
nisarootofe,e=nP, withp=p+~y+1,
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Fundamental matrix solution

Proposition. The differential equation 5% = A(x,¢e)y has a
fundamental matrix solution of the form

1 0
Y(x,n) = < 0 X ) Q(x, 77)e/\(x,77)

where
nisarootofe,e=nP, withp=p+~y+1,
Q@ admits a CAsE of Gevrey order %,
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Fundamental matrix solution

Proposition. The differential equation 5% = A(x,¢e)y has a
fundamental matrix solution of the form

1 0
Y(x,n) = < 0 X ) Q(x, 77)e/\(x,77)

where

nisarootofe, e =nP, withp=pu+~vy+1,
Q@ admits a CAsE of Gevrey order %,

N is a diagonal matrix.
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Preparation of equation (1)

0 xH
(1) 5% = Ax,e)y  where Ag(x) = ( <27 ) ’
+ y=T(x)u
u —xP—1 0
(2) 5% = B(x,e)u  where By(x) = < 0 -1 > ,

1l u=®(x,n)v and ¢ = nP

dv _ ([ x 0
(3) nP% = C(x,nm)v where C(X,n)_<0 *>.
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Preparation of equation (1)

0 xH
(1) 5% = Ax,e)y  where Ag(x) = ( <27 ) ’
+ y=T(x)u
u —xP—1 0
(2) 5% = B(x,e)u  where By(x) = < 0 -1 > ,

1l u=®(x,n)v and ¢ = nP

dv _ ([ x 0
(3) nP% = C(x,nm)v where C(X,n)_<0 *>.
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Fundamental matrix solution
Existence of ®

We now make the second change of variables explicit:

u=ov and e=1n".
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Fundamental matrix solution
Existence of ®

We now make the second change of variables explicit:
u=ov and e=1n".

The matrix ¢ is as follows :

_( 1 ¢
oo (1 7).
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Fundamental matrix solution
Existence of ®

We now make the second change of variables explicit:
u=ov and e=1n".
The matrix ® is as follows :
_ (1 ¢
o ( 5 ) .

The function ¢T, resp. ¢, satisfies a Riccati equation :

pd®

= £2xP g + FE(9)(x,m).
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Proof of the main result

Fundamental matrix solution
Existence of ¢

dot

- =2t + FH(eh)

77P

Let My be the set of holomorphic functions ¢(x, ) defined for
n € S and x € Q(n) such that |¢(x,n)| < k.
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Fundamental matrix solution
Existence of ¢

dot

- =2t + FH(eh)

77P

Let My be the set of holomorphic functions ¢(x,n) defined for
n € S and x € Q(n) such that |¢(x,n)| < k.

Consider the following mapping 7 : My — My,

o [ FR)E o) de

0
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Fundamental matrix solution
Existence of ¢

dot

- =2t + FH(eh)

77P

Let My be the set of holomorphic functions ¢(x,n) defined for
n € S and x € Q(n) such that |¢(x,n)| < k.

Consider the following mapping 7 : My — My,

o [ FR)E o) de

0

@ existence of ¢T
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Fundamental matrix solution
Existence of ¢

dot

- =2t + FH(eh)

77P

Let My be the set of holomorphic functions ¢(x,n) defined for
n € S and x € Q(n) such that |¢(x,n)| < k.

Consider the following mapping 7 : My — My,

o [ FR)E o) de

0

@ existence of ¢T

o existence of (¢1)]
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Fundamental matrix solution
Existence of ¢

dot

- =2t + FH(eh)

77P

Let My be the set of holomorphic functions ¢(x,n) defined for
n € S and x € Q(n) such that |¢(x,n)| < k.

Consider the following mapping 7 : My — My,
X 2(xP_ P
o nlp/ er (7= ) F+(o(c, ) de.
Xo

o existence of ¢
: j
e existence of (¢,

o (97 )i(x.m) ~1 (97Y(x.m)



Proof of the main result

Fundamental matrix solution

Summary




Proof of the main result

Fundamental matrix solution

Summary




ix solution

Proof of the main result

Fundamental matrix solution

Summary

} y=T(x)u
(2) e =B(x,e)u U=oV
+ u=(x,n)v T
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Summary

(1) &% =A(x,e)y Y =ToVv
! y=T(x)u ?

(2) e =B(x,e)u U=oV
4 u=®(x,n)v 0
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Fundamental matrix solution

We deduce the form of a fundamental matrix solution of
d .
Ege = A(x,e)y :

1 0
Vi) = (g o ) Qe
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Fundamental matrix solution

We deduce the form of a fundamental matrix solution of

d
ek =A(x,e)y :

1 0
Vi) = (g o ) Qe

where
Q@ admits a CAsE of Gevrey order %,

1xP
Nox,n)=| P7 + Ri(e) log x L 0 '
' 0 o5 T Ra(e) log x
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Slow-fast factorization

Theorem. For all r €]0, ro[, there exist L(x, ) holomorphic and
bounded on D(0,r) x S and R(x,n) holomorphic and bounded for
n €S, x € V(n), such that :

Q(XJI) = L(X’e) ) R(Xvn)a
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Theorem. For all r €]0, ro[, there exist L(x, ) holomorphic and
bounded on D(0,r) x S and R(x,n) holomorphic and bounded for
n €S, x € V(n), such that :

Q(XJI) = L(X’e) ) R(Xvn)a

L(x,e) ~ ZA,,(X)S" ase—0inS and |x| <r,

n>0



Fundamental matrix solution
Slow-fast factorization

Proof of the main result Analytic simplification

Slow-fast factorization

Theorem. For all r €]0, ro[, there exist L(x, ) holomorphic and
bounded on D(0,r) x S and R(x,n) holomorphic and bounded for
n €S, x € V(n), such that :

Q(XJI) = L(X’e) ) R(Xvn)a

L(x,e) ~ ZA,,(X)S" ase—0inS and |x| <r,
n>0
and

R(x,n) ~1 > n>0 Gn(Z)n" asn—0in S and x € V(n),

Gn(X) ~1 > GumX™™ as X =00 in V.

m>0
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Proof of the main result Analytic simplification

Slow-fast factorization
Preparation of Y

As @ =L - R, we have
10 N(x,e
Vi) = (5 5 ) Qe

_ 1 0 1 0 1 0 A(x,)
= (0 X7>L(x,a)<0 x_7><0 X7>R(x,n)e .

P(x,¢)
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Slow-fast factorization
Preparation of Y

The matrix Y(x,n) can be written

10 X,
Vo) = Plxe) (o o ) Rxon)e e
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Slow-fast factorization
Preparation of Y

The matrix Y(x,n) can be written

1 0 X
Y(x,n) = P(x,¢) ( 0 X > R(x,n)eM0e),

where
P is a slow matrix, 1.e.

P(x,e) ~1 ZA,,(X)&” as $55e—0, x| <r,

n>0
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Slow-fast factorization
Preparation of Y

The matrix Y(x,n) can be written

1 0 X
Y(x,n) = P(x,¢) ( 0 X > R(x,n)eM0e),

where
P is a slow matrix, 1.e.

P(x,e) ~1 ZA,,(X)&” as $55e—0, x| <r,

n>0

R is a fast matrix, i.e.

R(x.m) ~ Z Gn(%)n" as S>n—0, xe V(n),
n>0



Fundamental matrix solution
Slow-fast factorization

Proof of the main result Analytic simplification

Slow-fast factorization
Preparation of Y

The matrix Y(x,n) can be written

10 X,
Vo) = Plxe) (o o ) Rxon)e e

where
P is a slow matrix, 1.e.

P(x,e) ~1 ZA,,(X)&” as $55e—0, x| <r,

n>0

R is a fast matrix, i.e.

R(x.m) ~ Z Gn(%)n" as S>n—0, xe V(n),
n>0

A is a diagonal matrix.
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Analytic simplification

Proposition. The change of variables y = P(x,c)w reduces the
differential equation 5% = A(x,¢e)y to

e = D(x,e)w,

where D(x, &) ~1 D(x,¢),

A x. ) = é\/ll(x7€) 8,1\2()(’6)
D(x,e) (d21(x,€) —dh11(x,¢€) )’

and the 8,-1- are polynomials in x such that

deg, diy < w+-y, deg, dir = i and deg, thy = w4+ 27.
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Analytic simplification

Proof of the proposition

Proof. On the one hand,
D=P AP —eP P

and A
D(x,e) ~1 D(x,¢),

ase—0in Sand |x| < r.
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Proof of the proposition

Proof. On the one hand,
D=P AP —eP P

and A
D(x,e) ~1 D(x,¢),

ase—0in Sand |x| < r.

On the other hand, W(x,n) = < é )?7 ) R(x,n)eM>*M is a

fundamental matrix solution of equation e9* = D(x,¢)w and
D(x,e) = W' (x, ))W(x, 1) ",

We deduce a bound for the degree of each entry of D(x,¢).
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Proof of the proposition

Proof. On the one hand,
D=P AP —eP P

and A
D(x,e) ~1 D(x,¢),

ase—0in Sand |x| < r.

On the other hand, W(x,n) = < é )?7 ) R(x,n)eM*M is a

fundamental matrix solution of equation e9* = D(x,¢)w and
D(x,e) = W' (x, )W (x, 1) ",

We deduce a bound for the degree of each entry of D(x,¢).
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Analytic simplification

‘31 1 2/12

Let D =
dy —di1

be a matrix of polynomials in x such that

D(x,e) ~1 D(x,e) ase—0in$§
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Analytic simplification

Let D = gll dlz be a matrix of polynomials in x such that
d» —di1
D(x,e) ~1 D(x,e) ase—0in$§

and

deg, diy < w+-y, deg, dip = i and deg, dhy = w4+ 27.
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Analytic simplification

Let D = gll dlz be a matrix of polynomials in x such that
d» —di1

D(x,e) ~1 D(x,e) ase—0in$§
and
deg, diy < w+-y, deg, dip = i and deg, dhy = w4+ 27.

Proposition. For all r €]0, o[, there exists P(x,¢), holomorphic
and bounded on D(0,r) x S, admitting an asymptotic expansion of
Gevrey order 1, such that det Po(x) =1 and the change of variables

y = P(x,e)w reduces the differential equation Ezy = A(x,¢e)y to
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The main result (even case)

Theorem. If (C) is satisfied, then Vr €]0, o[ , VS, 3T (x,¢)
holomorphic and bounded on D(0,r) x S such that :
o T(x,e)~1 T(x,e) ase—0inS and |x| <r,
e det To(x) =1,
° d d
sd—i = A(x,¢e)y N ad—i = B(x,¢)z

where
. 0 xH b11(X,€) b12(X,€)
B(X7€) o ( X!L+27 0 > +€( b21(X,€) —b11(X,€) ’
and the bjj are polynomials in x such that

deg, b1 < p, deg, bio < i and deg, bo1 < pu+ 27.
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Summability

Can we obtain a 1-summable simplification in the direction
arge =07

Definition

Let f(c) = Y n>0 fne” be a Gevrey-1 formal series.

We say that f(c) is 1-summable in the direction arge = 0 if there
exist 0,9 > 0 and a holomorphic function f(¢) on the sector
S={eeC, 0<|e|] <egand |arge| < § + 0} such that f ~; £
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Summability

The differential equation a% = A(x,¢€)y, where
B ea(x, e) x" + eb(x, €)
Alx.g) = ( xF+2Y 4 ec(x,e)  —ca(x,e) ’

is formally equivalent to 5% = B(x,¢)z via the formal change of

A

variables y = T(x,¢)z.
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The differential equation a% = A(x,€)y, where
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is formally equivalent to sd = B(x,¢)z via the formal change of
variables y = T(x,¢)z.
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is formally equivalent to e % = B(x, )z via the formal change of

A

variables y = T(x,¢)z.

Assumption Al : A(x,¢) is analytic on D x D(0, g).
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The differential equation a% = A(x,€)y, where
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variables y = T(x,¢)z.

Assumption Al : A(x,¢) is analytic on D x D(0, gg).
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Summability

The differential equation a% = A(x,€)y, where

B 6a(X,5) XN+5b(X,€)
A(x,e) = ( sHF2y + ec(x, €) —ea(x,¢) > ’

is formally equivalent to e % = B(x, )z via the formal change of

A

variables y = T(x,¢)z.

Assumption Al : A(x,¢) is analytic on D x D(0, gg).

Assumption A2 :
a(x,e) = O(x"*7), b(x,e) = O(x") and ¢(x,e) = O(x"+27).
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Summability

The differential equation a% = A(x,€)y, where

A(x,e) = ( ca(x,e) x* 4+ eb(x, €) > ’

XM ec(x,e)  —ea(x,e)

is formally equivalent to e % = B(x, )z via the formal change of

A

variables y = T(x,¢)z.

Assumption Al : A(x,¢) is analytic on D x D(0, gg).

Assumption A2 :
a(x,e) = O(x"*7), b(x,e) = O(x") and ¢(x,e) = O(x"+27).

Result. 7 and B are 1-summable in the direction arge = 0.
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Step 1 : Preparatory simplifications

(1) % — A(x,e)y where Ag(x) = 0, %
dx €)Y 0 xht2r )

(3) e%zé(x,a)v where 6(x,s):<g 2)



Definition
Assumptions

Summability Idea of the proof

Step 1 : Preparatory simplifications

0 xH
(1) e% =A(x,e)y where Ag(x) = < xH2T ) :
_yp—1
(2) €% =B(x,e)u where Bo(x)=< g ; )

(3) e%zé(x,a)v where 6(x,s):<g 2)

Proposition. ® is 1-summable in the direction arge = 0.
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Proof.

The formal series ¢ is the unique formal solution of

e/ =2xP71p + eP(x, ¢,¢).
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Summability

Proof.

The formal series ¢ is the unique formal solution of

e/ =2xP71p + eP(x, ¢,¢).

Assumption A2 = P(x, $,¢) = O(xP71).



Definition
Assumptions

Summability Idea of the proof

gd' = 2xP7L1p + eP(x, ¢, ¢)



Definition
Assumptions
Idea of the proof

Summability

gd' = 2xP7L1p + eP(x, ¢, ¢)

For a fixed xg, consider the set of holomorphic and bounded
functions on M,, x Sp, where

Soz{se(C, 0 < |e] < eg and |arg6]<g—6}

and

Figure: M,,
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We apply the Banach fixed point theorem to the equation

6=To, (To)(xc)= é / “en 0P p(r o(t.2) €) dt.
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gd' = 2xP7L1p + eP(x, ¢, ¢)

We apply the Banach fixed point theorem to the equation
1 [ 2p_
(Z§ = T¢7 (T¢)(X, g) = 5/ epze (xP tP)P(t, ¢(t7 E), E) dt.

Its solution ¢ admits a Gevrey-1 asymptotic expansion :

¢t (x,€) ~ ¢T(x,€) as Sy 3& — 0, uniformly on My,
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gd' = 2xP7L1p + eP(x, ¢, ¢)

Now proceed the same way for each £ € M.

Figure: M in dark grey
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Combining the solutions of the analogous fixed point equation, we
obtain an analytic function
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where

52{56@, 0 < el < eo and\arg5\<g+5}
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gd' = 2xP7L1p + eP(x, ¢, ¢)

Now proceed the same way for each £ € M.
Combining the solutions of the analogous fixed point equation, we
obtain an analytic function

¢t My xS — C,
where
S= {EGC, 0 <lel <epand |arge| < g—l—d}
and
¢t (x,€) ~1 T (x,e) as S 3 e — 0, uniformly on M,

Therefore & is 1-summable in the direction arge = 0.
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End of the proof

© Preparation of equation (1)

@ Fundamental matrix solution

© 1l-summable slow fast factorization
@ Simplification
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