Feuille d'exercices n°18 – Correction Applications linéaires

Définitions

Exercice 1. Les applications suivantes sont-elles linéaires? Si oui, déterminer leur noyau et leur image. Préciser alors si elles sont injectives, surjectives ou bijectives.

- 1. $f: \mathbb{R}^3 \to \mathbb{R}$ définie par f(x, y, z) = x + y + 2z;
- 2. $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x,y) = x + y + 1;
- 3. $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x,y) = xy;
- 4. $f: \mathbb{R}^3 \to \mathbb{R}$ définie par f(x, y, z) = x z;
- 5. $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \cos x$;
- 6. $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (0, 2x + y, x + 3y);
- 7. $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (x-y, x+y, xy).

Correction.

1. Linéarité : Soient $X=(x,y,z), X'=(x',y',z')\in\mathbb{R}^3$ et $\lambda\in\mathbb{R}$.

$$f(\lambda X + X') = f(\lambda x + x', \lambda y + y', \lambda z + z')$$

$$= (\lambda x + x') + (\lambda y + y') + 2(\lambda z + z')$$

$$= (\lambda x + \lambda y + 2\lambda z) + (x' + y' + 2z')$$

$$= \lambda (x + y + 2z) + (x' + y' + 2z')$$

$$= \lambda f(x, y, z) + f(x', y, x', z')$$

$$= \lambda f(X) + f(X').$$

Conclusion: Pour tout $X, X' \in \mathbb{R}^3$ et tout $\lambda \in \mathbb{R}$, $f(\lambda X + X') = \lambda f(X) + f(X')$. Donc $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$.

Injective?

$$(x, y, z) \in \text{Ker}(f) \iff f(x, y, z) = 0$$

$$\iff \boxed{x} + y + 2z = 0$$

$$\iff \begin{cases} x = -y - 2z \\ y = y & \text{avec } (y, z) \in \mathbb{R}^2 \\ z = z \end{cases}$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}, \quad \text{avec } (y, z) \in \mathbb{R}^2.$$

On note
$$u=\begin{pmatrix} -1\\1\\0 \end{pmatrix}$$
 et $v=\begin{pmatrix} -2\\0\\1 \end{pmatrix}$. On a montré que

$$Ker(f) = Vect(u, v).$$

De plus, (u, v) est libre (coordonnées non proportionnelles).

La famille (u, v) constitue donc une base de Ker(f) et $\dim(Ker(f)) = 2$.

Comme $Ker(f) \neq \{0_{\mathbb{R}^3}\}, f$ n'est pas injective.

Surjective?

On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

$$\operatorname{Im}(f) = f\left(\mathbb{R}^{3}\right)$$

$$= \operatorname{Vect}\left(f(e_{1}), f(e_{2}), f(e_{3})\right)$$

$$= \operatorname{Vect}\left(1, 1, 2\right)$$

$$= \operatorname{Vect}\left(\boxed{1}, 0, 0\right)$$

$$= \operatorname{Vect}\left(\boxed{1}\right).$$

 $\operatorname{Im}(f) \subset \mathbb{R} \text{ et } \dim \left(\operatorname{Im}(f)\right) = 1 = \dim \left(\mathbb{R}\right), \ \operatorname{donc} \ \operatorname{Im}(f) = \mathbb{R}.$

Comme $\text{Im}(f) = \mathbb{R}$, f est surjective.

Bijective? f n'est pas bijective.

- 2. Linéarité : f n'est pas linéaire car $f(0,0) \neq 0$.
- 3. Linéarité : f n'est pas linéaire car $f(0,1) + f(1,0) \neq f(1,1)$.
- 4. Linéarité : Soient $X=(x,y,z), X'=(x',y',z')\in\mathbb{R}^3$ et $\lambda\in\mathbb{R}$.

$$f(\lambda X + X') = f(\lambda x + x', \lambda y + y', \lambda z + z')$$

$$= (\lambda x + x') - (\lambda z + z')$$

$$= (\lambda x - \lambda z) + (x' - z')$$

$$= \lambda f(x, y, z) + f(x', y, x', z')$$

$$= \lambda f(X) + f(X').$$

Conclusion: Pour tout $X, X' \in \mathbb{R}^3$ et tout $\lambda \in \mathbb{R}$, $f(\lambda X + X') = \lambda f(X) + f(X')$. Donc $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$.

Injective?

$$(x,y,z) \in \operatorname{Ker}(f) \iff f(x,y,z) = 0$$

$$\iff \boxed{x - z = 0}$$

$$\iff \begin{cases} x = z \\ y = y \quad \text{avec } (y,z) \in \mathbb{R}^2 \\ z = z \end{cases}$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \operatorname{avec } (y,z) \in \mathbb{R}^2.$$

On note
$$u = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 et $v = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. On a montré que
$$\operatorname{Ker}(f) = \operatorname{Vect}(u, v).$$

De plus, (u, v) est libre (coordonnées non proportionnelles).

La famille (u, v) constitue donc une base de Ker(f) et $\dim(Ker(f)) = 2$.

Comme $Ker(f) \neq \{0_{\mathbb{R}^3}\}, f$ n'est pas injective.

Surjective?

On note (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

$$\operatorname{Im}(f) = f\left(\mathbb{R}^{3}\right)$$

$$= \operatorname{Vect}\left(f(e_{1}), f(e_{2}), f(e_{3})\right)$$

$$= \operatorname{Vect}\left(1, 0, -1\right)$$

$$= \operatorname{Vect}\left(\boxed{1}, 0, 0\right)$$

$$= \operatorname{Vect}\left(\boxed{1}\right).$$

 $\operatorname{Im}(f) \subset \mathbb{R} \text{ et } \dim\left(\operatorname{Im}(f)\right) = 1 = \dim\left(\mathbb{R}\right), \text{ donc } \operatorname{Im}(f) = \mathbb{R}.$

Comme $\text{Im}(f) = \mathbb{R}$, f est surjective.

Bijective? f n'est pas bijective.

5. Linéarité : f n'est pas linéaire car $f(0) \neq 0$.

6. Linéarité : Soient $X=(x,y), X'=(x',y')\in\mathbb{R}^2$ et $\lambda\in\mathbb{R}$.

$$f(\lambda X + X') = f(\lambda x + x', \lambda y + y')$$

$$= (0, 2(\lambda x + x') + (\lambda y + y'), (\lambda x + x') + 3(\lambda y + y'))$$

$$= (0, \lambda(2x + y) + (2x' + y'), \lambda(x + 3y) + (x' + 3y'))$$

$$= (0, \lambda(2x + y), \lambda(x + 3y)) + (0, 2x' + y', x' + 3y')$$

$$= \lambda(0, 2x + y, x + 3y) + (0, 2x' + y', x' + 3y')$$

$$= \lambda f(X) + f(X').$$

Conclusion : Pour tout $X, X' \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$, $f(\lambda X + X') = \lambda f(X) + f(X')$. Donc $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$.

Injective?

$$(x,y) \in \text{Ker}(f) \iff f(x,y) = 0_{\mathbb{R}^3}$$

$$\iff f(x,y) = (0,0,0)$$

$$\iff (0,2x+y,x+3y) = (0,0,0)$$

$$\iff \begin{cases} 0 = 0 \\ 2x+y = 0 \\ x+3y = 0 \end{cases}$$

$$\iff (x,y) = (0,0)$$

Conclusion:

$$Ker(f) = \{(0,0)\}$$

Donc f est injective.

Surjective?

On note (e_1, e_2) la base canonique de \mathbb{R}^2 .

$$Im(f) = Vect (f(e_1), f(e_2))$$

$$= Vect (f(1,0), f(0,1))$$

$$= Vect \left(\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}\right)$$

$$= Vect \left(\begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}\right)$$
opération sur les colonnes
$$= Vect \left(\begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -5 \end{pmatrix}\right).$$

La famille $\left(\begin{pmatrix} 0\\ 1\\ 3 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ -5 \end{pmatrix}\right)$ est une base de $\mathrm{Im}(f)$ et $\mathrm{dim}(\mathrm{Im}(f))=2.$

or f est surjective \iff Im $(f) = \mathbb{R}^3$

Donc f n'est pas surjective car $\dim(\operatorname{Im}(f)) \neq \dim(\mathbb{R}^3)$.

Bijective? f n'est pas bijective.

7. Linéarité : f n'est pas linéaire car

$$f(0,1) + f(1,0) \neq f(1,1).$$

Exercice 2. On note E le \mathbb{R} -espace vectoriel des fonctions continues sur [0,1] à valeurs dans \mathbb{R} . Soit $J:E\to\mathbb{R}$ définie par $J(f)=\int_0^1 f(t)dt$. Montrer que J est une application linéaire de E dans \mathbb{R} .

Correction.

Soient $f, g \in E$ et $\lambda \in \mathbb{R}$.

$$J(\lambda f + g) = \int_0^1 (\lambda f + g)(t) dt$$
$$= \int_0^1 (\lambda f(t) + g(t)) dt$$
$$= \lambda \int_0^1 f(t) dt + \int_0^1 g(t) dt$$
$$= \lambda J(f) + J(g).$$

Ainsi pour tout $f, g \in E$ et $\lambda \in \mathbb{R}$, $J(\lambda f + g) = \lambda J(f) + J(g)$.

Conclusion : J est une application linéaire de E dans \mathbb{R} .

Exercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x+y,x-y). Montrer que f est un automorphisme de \mathbb{R}^2 et déterminer son automorphisme réciproque.

Correction.

Soient $X = (x, y), X' = (x', y') \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$.

$$f(\lambda X + X') = f(\lambda x + x', \lambda y + y')$$

$$= ((\lambda x + x') + (\lambda y + y'), (\lambda x + x') - (\lambda y + y'))$$

$$= (\lambda x + \lambda y, \lambda x - \lambda y) + (x' + y', x' - y')$$

$$= \lambda (x + y, x - y) + (x' + y', x' - y')$$

$$= \lambda f(x, y) + f(x', y')$$

$$= \lambda f(X) + f(X').$$

Donc $f \in \mathcal{L}(\mathbb{R}^2)$ (f est un endomorphisme de \mathbb{R}^2).

Montrons que f est injective.

$$(x,y) \in \operatorname{Ker}(f) \iff f(x,y) = (0,0)$$

 $\iff (x+y,x-y) = (0,0)$
 $\iff x = 0 \text{ et } y = 0$
 $\iff (x,y) = (0,0).$

Donc

$$Ker(f) = \{(0,0)\}.$$

Donc f est injective.

f est un endomorphisme injectif de \mathbb{R}^2 , donc f est bijective (théorème du cours). L'application f est donc un automorphisme de \mathbb{R}^2 .

Expression de f^{-1} : On note \mathcal{B} la base canonique de \mathbb{R}^2 . On a

$$\operatorname{Mat}_{\mathscr{B}}(f) = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right),$$

et

$$\operatorname{Mat}_{\mathscr{B}}(f^{-1}) = (\operatorname{Mat}_{\mathscr{B}}(f))^{-1}$$

$$= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1}$$

$$= \frac{1}{-2} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}.$$

On en déduit que pour tout $(x, y) \in \mathbb{R}^2$,

$$f^{-1}(x,y) = \left(\frac{1}{2}x + \frac{1}{2}y, \frac{1}{2}x - \frac{1}{2}y\right).$$

$$f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto \left(\frac{1}{2}(x+y), \frac{1}{2}(x-y)\right)$.

Exercice 4. On considère les applications

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x,y) \mapsto (x,2x+y,y)$$

et

$$g: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \mapsto (x + y, 5x - 2y + z)$$

- 1. Montrer que f et g sont des applications linéaires.
- 2. Déterminer $\operatorname{Ker} f$, $\operatorname{Ker} g$, $\operatorname{Im} f$ et $\operatorname{Im} g$. Que peut-on en déduire?
- 3. Montrer que $g \circ f$ est un automorphisme de \mathbb{R}^2 .

Correction.

1. Soient $X = (x, y), X' = (x', y') \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$.

$$f(\lambda X + X') = f(\lambda x + x', \lambda y + y')$$

$$= ((\lambda x + x'), 2(\lambda x + x') + (\lambda y + y'), \lambda y + y')$$

$$= (\lambda x, 2\lambda x + \lambda y, \lambda y) + (x', 2x' + y', y')$$

$$= \lambda (x, 2x + y, y) + (x', 2x' + y', y')$$

$$= \lambda f(X) + f(X').$$

Ainsi pour tout $X, X' \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$, $f(\lambda X + X') = \lambda f(X) + f(X')$. Conclusion : $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$.

Soient $X = (x, y, z), X' = (x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$.

$$g(\lambda X + X') = f(\lambda x + x', \lambda y + y', \lambda z + z')$$

$$= ((\lambda x + x') + (\lambda y + y'), 5(\lambda x + x') - 2(\lambda y + y') + (\lambda z + z'))$$

$$= (\lambda x + \lambda y, 5\lambda x - 2\lambda y + \lambda z) + (x' + y', 5x' - 2y' + z')$$

$$= \lambda (x + y, 5x - 2y + z) + (x', 2x' + y', y')$$

$$= \lambda g(X) + g(X').$$

Ainsi pour tout $X, X' \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$, $g(\lambda X + X') = \lambda g(X) + g(X')$. Conclusion : $g \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$.

(2)

$$(x,y) \in \text{Ker}(f) \iff f(x,y) = (0,0,0)$$

 $\iff (x,2x+y,y) = (0,0,0)$
 $\iff (x,y) = (0,0).$

 $\operatorname{Ker}(f) = \{0_{\mathbb{R}^2}\}\ \text{et } f \text{ est injective.}$

$$\operatorname{Im}(f) = \operatorname{Vect}(f(1,0), f(0,1))$$

$$= \operatorname{Vect}((1,2,0), (0,1,1))$$

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \boxed{1} \\ 1 \end{pmatrix}\right)$$
opération sur les colonnes

$$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 constitue une base de $\operatorname{Im}(f)$ et $\dim(\operatorname{Im}(f)) = 2$.

Comme dim $(\text{Im}(f)) \neq \text{dim}(\mathbb{R}^3)$, $\text{Im}(f) \neq \mathbb{R}^3$ et f n'est pas surjective.

$$\begin{split} (x,y,z) \in \mathrm{Ker}(g) &\iff g(x,y,z) = (0,0) \\ &\iff \begin{cases} x+y=0 \\ 5x-2y+z=0 \end{cases} \\ &\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \\ 7 \end{pmatrix} \text{ avec } y \in \mathbb{R}. \end{split}$$

Ker(g) = Vect((-1, 1, 7)) et g n'est pas injective.

$$\begin{split} \operatorname{Im}(g) &= \operatorname{Vect}\left(g(1,0,0), g(0,1,0), g(0,0,1)\right) \\ &= \operatorname{Vect}\left(\left(\begin{array}{c} 1 \\ 5 \end{array}\right), \left(\begin{array}{c} 1 \\ -2 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \right) \\ &= \operatorname{Vect}\left(\left(\begin{array}{c} \boxed{1} \\ 5 \end{array}\right), \left(\begin{array}{c} 0 \\ -7 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \right) \\ &= \operatorname{Vect}\left(\left(\begin{array}{c} \boxed{1} \\ 5 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ \boxed{1} \end{array}\right) \right) \\ &= \operatorname{Vect}\left(\left(\begin{array}{c} \boxed{1} \\ 5 \end{array}\right), \left(\begin{array}{c} 0 \\ \boxed{1} \end{array}\right) \right) \\ &= \mathbb{R}^2. \end{split}$$

Donc $\text{Im}(g) = \mathbb{R}^2$ et g est surjective.

3. En tant que composée d'applications linéaires, $g \circ f$ est linéaire. L'application $g \circ f$ est donc un endomorphisme de \mathbb{R}^2 .

Expression de $g\circ f$: On note $\mathscr B$ la base canonique de $\mathbb R^2$ et $\mathscr C$ la base canonique de $\mathbb R^3$. On a

$$\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(g \circ f) = \operatorname{Mat}_{\mathscr{C},\mathscr{B}}(g) \times \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(f)$$

$$= \begin{pmatrix} 1 & 1 & 0 \\ 5 & -2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$$

Ainsi pour tout $(x, y) \in \mathbb{R}^2$,

$$(g \circ f)(x,y) = (3x + y, x - y).$$

Montrons que $g \circ f$ est injective.

$$(x,y) \in \text{Ker}(g \circ f) \iff (g \circ f)(x,y) = (0,0)$$

$$\iff \begin{cases} 3x + y = 0 \\ x - y = 0 \end{cases}$$

$$\iff (x,y) = (0,0).$$

 $\operatorname{Ker}(g \circ f) = \{0_{\mathbb{R}^2}\}\ \text{et}\ g \circ f\ \text{est injective}.$

Conclusion : $g\circ f$ est un endomorphisme injectif de \mathbb{R}^2 . Il s'agit donc d'un automorphisme de \mathbb{R}^2 .

Exercice 5. Soit
$$f: \mathbb{R}_2[X] \to \mathbb{R}^3$$

 $P \mapsto (P(-1), P(0), P(1))$

Montrer que f est un isomorphisme de $\mathbb{R}_2[X]$ sur \mathbb{R}^3 .

Correction.

Soient P et $Q \in \mathbb{R}_2[X]$ et $\lambda \in \mathbb{R}$.

$$\begin{split} f(\lambda P + Q) &= ((\lambda P + Q)(-1), (\lambda P + Q)(0), (\lambda P + Q)(1)) \\ &= (\lambda P(-1) + Q(-1), \lambda P(0) + Q(0), \lambda P(1) + Q(1)) \\ &= (\lambda P(-1), \lambda P(0), \lambda P(1)) + (Q(-1), Q(0), Q(1)) \\ &= \lambda \left(P(-1), P(0), P(1) \right) + (Q(-1), Q(0), Q(1)) \\ &= \lambda f(P) + f(Q). \end{split}$$

Ainsi pour tout P et $Q \in \mathbb{R}_2[X]$ et $\lambda \in \mathbb{R}$, $f(\lambda P + Q) = \lambda f(P) + f(Q)$.

Conclusion : $f \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^3)$.

Montrons que f est injective.

Soit $P \in \mathbb{R}_2[X]$. On a:

$$P \in \text{Ker}(f) \iff f(P) = (0,0,0)$$

 $\iff (P(-1), P(0), P(1)) = (0,0,0)$
 $\iff -1,0,1 \text{ sont des racines de } P$
 $\iff P = 0,$

car un polynôme non nul de $\mathbb{R}_2[X]$ admet au plus deux racines distinctes.

Conclusion : $Ker(f) = \{0\}$ et f est injective.

Montrons que f est surjective.

$$\operatorname{Im}(f) = \operatorname{Vect}\left(f(1), f(X), f(X^2)\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1}\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix}\right)$$
on opère sur les colonnes

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \boxed{1} \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}\right)$$
$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \boxed{1} \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \boxed{1} \end{pmatrix}\right).$$

Ainsi dim (Im(f)) = 3.

Comme $\operatorname{Im}(f) \subset \mathbb{R}^3$ et $\dim (\operatorname{Im}(f)) = \dim (\mathbb{R}^3)$, on a

$$\operatorname{Im}(f) = \mathbb{R}^3$$

et |f| est surjective.

Conclusion : f est bijective. Il s'agit donc d'un isomorphisme de $\mathbb{R}_2[X]$ sur \mathbb{R}^3 .

Remarque : Il est possible de conclure plus rapidement : $f \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^3)$, f est injective et $\dim(\mathbb{R}_2[X]) = \dim(\mathbb{R}^3)$, donc f est un isomorphisme de $\mathbb{R}_2[X]$ sur \mathbb{R}^3 .

Exercice 6. Soit $f: \mathbb{R}^3 \to \mathbb{R}^4$ $(x,y,z) \mapsto (x+z,y-x,z+y,x+y+2z)$

- 1. Montrer que f est une application linéaire.
- 2. Calculer les images par f des vecteurs de la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 . En déduire une base de $\mathrm{Im} f$.
- 3. Déterminer une base de Ker f.
- 4. L'application f est-elle injective? surjective?

(1) Soient
$$X = (x, y, z), X' = (x', y', z') \in \mathbb{R}^3$$
 et $\lambda \in \mathbb{R}$.
$$f(\lambda X + X') = f(\lambda x + x', \lambda y + y', \lambda z + z')$$

$$= \begin{pmatrix} (\lambda x + x') + (\lambda z + z') \\ (\lambda y + y') - (\lambda x + x') \\ (\lambda z + z') + (\lambda y + y') \end{pmatrix}$$

$$= \begin{pmatrix} \lambda x + \lambda z \\ \lambda y - \lambda x \\ \lambda z + \lambda y \\ \lambda x + \lambda y + 2\lambda z \end{pmatrix} + \begin{pmatrix} x' + z' \\ y' - x' \\ z' + y' \\ x' + y' + 2z' \end{pmatrix}$$

$$= \lambda \begin{pmatrix} x + z \\ y - x \\ z + y \\ x + y + 2z \end{pmatrix} + \begin{pmatrix} x' + z' \\ y' - x' \\ z' + y' \\ x' + y' + 2z' \end{pmatrix}$$

$$= \lambda f(x, y, z) + f(x', y', z')$$

$$= \lambda f(X) + f(X').$$

Conclusion : Pour tout $X, X' \in \mathbb{R}^3$ et tout $\lambda \in \mathbb{R}$, on a

$$f(\lambda X + X') = \lambda f(X) + f(X').$$

Donc $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^4)$.

(2) Calculer $f(e_1)$, $f(e_2)$ et $f(e_3)$.

$$f(e_1) = f(1,0,0)$$

= $(1,-1,0,1)$

$$f(e_2) = f(0, 1, 0)$$
$$= (0, 1, 1, 1)$$

et

$$f(e_3) = f(0,0,1)$$

= (1,0,1,2).

$$\operatorname{Im}(f) = f(\mathbb{R}^{3})$$

$$= \operatorname{Vect}\left(f(e_{1}), f(e_{2}), f(e_{3})\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}\right)$$

en opérant sur les colonnes

$$= \operatorname{Vect} \left(\begin{pmatrix} \boxed{1} \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right)$$

$$= \operatorname{Vect} \left(\begin{pmatrix} \boxed{1} \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \boxed{1} \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right)$$

$$= \operatorname{Vect} \left(\begin{pmatrix} \boxed{1} \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \boxed{0} \\ \boxed{1} \\ 1 \\ 1 \end{pmatrix} \right)$$

$$\left(\begin{pmatrix} \boxed{1} \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \boxed{0} \\ \boxed{1} \\ 1 \\ 1 \end{pmatrix}\right) \text{ est une base de } \mathrm{Im}(f) \text{ et } \dim(\mathrm{Im}(f)) = 2.$$

(3) Déterminer une base du noyau :

$$(x,y,z) \in \operatorname{Ker}(f)$$

$$\iff f(x,y,z) = \mathbf{0}$$

$$\iff (x+z,y-x,z+y,x+y+2z) = (0,0,0,0)$$

$$\iff \begin{cases} x+z=0 \\ y-x=0 \\ z+y=0 \\ x+y+2z=0 \end{cases}$$

$$\iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad (y \in \mathbb{R})$$

$$\operatorname{Ker}(f) = \operatorname{Vect}\left(\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}\right).$$

$$\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$$
 est une base de $\operatorname{Ker}(f)$ et $\dim (\operatorname{Ker}(f)) = 1$.

(4) f n'est pas injective car $\dim (\operatorname{Ker}(f)) \neq 0$, f n'est pas surjective car $\dim (\operatorname{Im}(f)) \neq \dim(\mathbb{R}^4)$.

Exercice 7. Soient f et g deux endomorphismes d'un espace vectoriel E tel que $f \circ g = g \circ f$. Montrer que Ker(f) et Im(f) sont stables par g.

Correction.

Définition. Soient $f \in \mathcal{L}(E)$ et G un sous-espace vectoriel de E. G est dit stable par f si et seulement si $f(G) \subset G$, si et seulement si pour tout $x \in G$, $f(x) \in G$.

Montrons que $\operatorname{Ker}(f)$ est stable par g, c'est-à-dire que pour tout $x \in \operatorname{Ker}(f)$, $g(x) \in \operatorname{Ker}(f)$.

Soit $x \in \text{Ker}(f)$. On a

$$f(g(x)) = g(f(x))$$
 (car $f \circ g = g \circ f$)
= $g(0)$ (car $x \in \text{Ker}(f)$)
= 0 (car g est linéaire).

Donc $g(x) \in \text{Ker}(f)$.

Ainsi pour tout $x \in \text{Ker}(f)$, $g(x) \in \text{Ker}(f)$. Ker(f) est stable par g.

Montrons que Im(f) est stable par g, c'est-à-dire que pour tout $y \in \text{Im}(f)$, $g(y) \in \text{Im}(f)$.

Soit $y \in \text{Im}(f)$. Il existe $x \in E$ tel que y = f(x). On

$$g(y) = g(f(x))$$

$$= f(g(x)) \quad (\operatorname{car} f \circ g = g \circ f)$$

$$\in \operatorname{Im}(f)$$

Ainsi pour tout $y \in \text{Im}(f)$, $g(y) \in \text{Im}(f)$. Im(f) est stable par g.

Représentation matricielle et rang

Exercice 8. On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{array}\right).$$

Déterminer $\dim (\operatorname{Ker} f)$ et $\operatorname{rg}(f)$.

Correction.

$$A \sim \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -2 \\ 0 & 3 & -1 \end{pmatrix}$$

$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ -1 & 3 & -1 \\ 0 & 3 & -1 \end{pmatrix} \quad C_2 \leftarrow C_2 - C_1, \ C_3 \leftarrow C_3 - C_1$$

$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad C_2 \leftarrow \frac{1}{3}C_2, \ C_3 \leftarrow -C_3$$

$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ -1 & \boxed{1} & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad C_3 \leftarrow C_3 - C_2$$

Donc g(f) = rg(A) = 2.

D'après le théorème du rang,

$$\dim(\mathbb{R}^3) = \dim(\mathrm{Ker}(f)) + \mathrm{rg}(f).$$

donc $|\dim(\operatorname{Ker}(f))| = 1$.

Remarque : f n'est pas injective car dim $(Ker(f)) \neq 0$ et f n'est pas surjective car $rg(f) \neq dim(\mathbb{R}^3)$.

Exercice 9. Déterminer le rang des familles de vecteurs suivantes et interpréter le résultat.

- 1. Dans \mathbb{R}^4 : $\mathscr{F} = (x_1, x_2, x_3)$, où $x_1 = (1, 1, 1, 1), \ x_2 = (1, -1, 1, -1)$ et $x_3 = (1, 0, 1, 0)$.
- 2. Dans \mathbb{R}^4 : $\mathscr{F} = (x_1, x_2, x_3, x_4)$, où $x_1 = (1, 1, 0, 1), \ x_2 = (1, -1, 1, 0), \ x_3 = (2, 0, 1, 1)$ et $x_4 = (0, 2, -1, 1)$.
- 3. Dans $\mathbb{R}_2[X]: \mathscr{F}=(P_1,P_2,P_3),$ où $P_1=X^2,\ P_2=X^2+2X \text{ et } P_3=X+1.$
- 4. Dans $\mathbb{R}_2[X]$: $\mathscr{F} = (P_1, P_2, P_3)$, où $P_1 = X^2 + 2X + 1, \ P_2 = X^2 X + 1 \text{ et } P_3 = X^2 7X + 1.$

Correction.

1.

$$\operatorname{Vect}(\mathscr{F}) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\-2\\0\\-2 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\-1 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}\right).$$

Conclusion : $\operatorname{rg}(\mathscr{F})=2$ et \mathscr{F} est une famille liée (car $\operatorname{rg}(\mathscr{F})\neq\operatorname{Card}(\mathscr{F})$).

2.

$$\operatorname{Vect}(\mathscr{F}) = \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -1 \\ 1 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ -1 \\ 1 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}\right).$$

Conclusion : $\operatorname{rg}(\mathscr{F}) = \dim\left(\operatorname{Vect}(\mathscr{F})\right) = 2$ et \mathscr{F} est une famille liée (car $\operatorname{rg}(\mathscr{F}) \neq \operatorname{Card}(\mathscr{F})$).

3. On note $\mathscr{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$.

 $P_1=X^2=0\times 1+0\times X+1\times X^2.$ Les coordonnées de P_1 dans la base $\mathcal B$ sont donc (0,0,1) et

$$\operatorname{Mat}_{\mathscr{B}}(P_1) = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right).$$

 $P_2 = X^2 + 2X = 0 \times 1 + 2 \times X + 1 \times X^2$. Les coordonnées de P_2 dans la base \mathcal{B} sont donc (0,2,1) et

$$\operatorname{Mat}_{\mathscr{B}}(P_2) = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}.$$

 $P_3 = X + 1 = 1 \times 1 + 1 \times X + 0 \times X^2$. Les coordonnées de P_3 dans la base \mathcal{B} sont donc (1,1,0) et

$$\operatorname{Mat}_{\mathscr{B}}(P_3) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

$$\operatorname{Mat}_{\mathscr{B}}(\mathscr{F}) = \operatorname{Mat}_{\mathscr{B}}(P_1, P_2, P_3)$$
$$= \begin{pmatrix} 0 & 0 & \boxed{1}_1 \\ 0 & \boxed{2}_2 & 1 \\ \boxed{1}_3 & 1 & 0 \end{pmatrix}.$$

Conclusion : $rg(\mathscr{F})=3$ et $\mathscr{F}=(P_1,P_2,P_3)$ est libre (car $rg(\mathscr{F})=Card(\mathscr{F})$).

4.

$$\operatorname{Mat}_{\mathscr{B}}(\mathscr{F}) = \operatorname{Mat}_{\mathscr{B}}(P_{1}, P_{2}, P_{3})$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -7 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ 2 & -3 & -9 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ 2 & \boxed{-3} & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Conclusion : $\operatorname{rg}(\mathscr{F})=2$ et \mathscr{F} est une famille liée (car $\operatorname{rg}(\mathscr{F})\neq\operatorname{Card}(\mathscr{F})$).

Exercice 10. Déterminer les matrices dans les bases canoniques et le rang des applications linéaires suivantes :

1.
$$f_1: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x - y, y - z)$

$$2. \quad f_2: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}$$
$$(x, y, z) \quad \mapsto \quad x - 5y + 4z$$

3.
$$f_3: \mathbb{R}_2[X] \rightarrow \mathbb{R}_2[X]$$

 $P \mapsto P - XP'$

4.
$$f_4: \mathbb{R}_3[X] \rightarrow \mathbb{R}^3$$

 $P \mapsto (P(-1), P(0), P(1))$

1

$$\operatorname{Mat}_{\operatorname{can}}(f_1) = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & -1 \end{array}\right).$$

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \quad C_2 \leftarrow C_2 + C_1$$
$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ 0 & \boxed{1} & 0 \end{pmatrix} \quad C_3 \leftarrow C_3 + C_2$$

Donc $\operatorname{rg}(f_1) = \operatorname{rg}(\operatorname{Mat}_{\operatorname{can}}(f_1)) = 2.$

Remarque : $\operatorname{rg}(f_1) = \dim(\mathbb{R}^2)$ donc f_1 est surjective.

Le théorème du rang assure que $\dim(\mathbb{R}^3) = \dim(\operatorname{Ker}(f_1)) + \operatorname{rg}(f_1)$. On a donc $\dim(\operatorname{Ker}(f_1)) = 1$. Comme $\dim(\operatorname{Ker}(f_1)) \neq 0$, f_1 n'est pas injective.

2.

$$Mat_{can}(f_2) = \begin{pmatrix} 1 & -5 & 4 \end{pmatrix}$$

$$\operatorname{Mat_{can}}(f_2) \sim (1 \ 0 \ 0)$$

 $C_2 \leftarrow C_2 + 5C_1, C_3 \leftarrow C_3 - 4C_1.$

Donc $\operatorname{rg}(f_2) = 1$.

Remarque : $\dim (\operatorname{Im} f_2) = 1 = \dim(\mathbb{R})$, donc f_2 est surjective.

D'après le théorème du rang, on a

$$\dim(\mathbb{R}^3) = \dim\left(\operatorname{Ker}(f_2)\right) + \operatorname{rg}(f_2).$$

Donc dim $(Ker(f_2)) = 2 \neq 0$ et f_2 n'est pas injective.

3.
$$f_3: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$
 c'est-à-dire $P \mapsto P - XP'$

$$f_3(P) = P - XP'.$$

Calculer $f_3(1)$, $f_3(X)$ et $f_3(X^2)$.

On a $f_3(1) = 1 - X[1]' = 1$, donc les coordonnées de $f_3(1)$ dans $(1, X, X^2)$ sont (1, 0, 0) et

$$\operatorname{Mat}_{\operatorname{can}}\left(f_{3}(1)\right) = \left(\begin{array}{c} 1\\0\\0 \end{array}\right).$$

On a $f_3(X) = X - X[X]' = 0$, donc les coordonnées de $f_3(X)$ dans $(1, X, X^2)$ sont (0, 0, 0) et

$$\operatorname{Mat}_{\operatorname{can}}\left(f_3(X)\right) = \left(\begin{array}{c} 0\\0\\0\end{array}\right).$$

On a $f_3(X^2) = X^2 - X [X^2]' = -X^2$, donc les coordonnées de $f_3(X^2)$ dans $(1, X, X^2)$ sont (0, 0, -1) et

$$\operatorname{Mat}_{\operatorname{can}}\left(f_3(X^2)\right) = \left(\begin{array}{c} 0\\0\\-1 \end{array}\right).$$

Conclusion:

$$\operatorname{Mat}_{\operatorname{can}}(f_3) = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

et
$$\operatorname{rg}(f_3) = 2$$

Remarque : f_3 n'est pas surjective car $\operatorname{rg}(f_3) \neq \dim(\mathbb{R}_2[X])$.

 f_3 n'est pas injective car dim $(\text{Ker}(f_3)) = 1 \neq 0$. (conséquence du théorème du rang).

4.

$$\operatorname{Mat_{can}}(f_4) = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 & 0 \\ 1 & 1 & -1 & 1 \\ 1 & 2 & 0 & 2 \end{pmatrix}$$

$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 & 0 \\ 1 & \boxed{1} & 0 & 0 \\ 1 & 2 & 2 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 & 0 \\ 1 & \boxed{1} & 0 & 0 \\ 1 & 2 & \boxed{2} & 0 \end{pmatrix}.$$

Conclusion: $\operatorname{rg}(f_4) = 3$

Exercice 11. Soit
$$u: \mathbb{R}^3 \to \mathbb{R}^4$$
 $(x,y,z) \mapsto (-x+y,x-y,-x+z,-y+z)$

- 1. Montrer que u est linéaire.
- 2. Soient $\mathscr{B}=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et $\mathscr{C}=(f_1,f_2,f_3,f_4)$ la base canonique de \mathbb{R}^4 . Déterminer $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(u)$.
- 3. Montrer que $\mathscr{F} = (f_1, f_2, u(e_1), u(e_2))$ est une base de \mathbb{R}^4 .
- 4. Écrire la matrice de u dans les bases \mathscr{B} et \mathscr{F} .

Correction.

1. Soient X = (x, y, z) et X' = (x', y', z') des éléments de \mathbb{R}^3 et $\lambda \in \mathbb{R}$.

$$u(\lambda X + X') = u \begin{pmatrix} \lambda x + x' \\ \lambda y + y' \\ \lambda z + z' \end{pmatrix}$$

$$= \begin{pmatrix} -(\lambda x + x') + (\lambda y + y') \\ (\lambda x + x') - (\lambda y + y') \\ -(\lambda x + x') + (\lambda z + z') \\ -(\lambda y + y') + (\lambda z + z') \end{pmatrix}$$

$$= \lambda \begin{pmatrix} -x + y \\ x - y \\ -x + z \\ -y + z \end{pmatrix} + \begin{pmatrix} -x' + y' \\ x' - y' \\ -x' + z' \\ -y' + z' \end{pmatrix}$$

$$= \lambda u(X) + u(X').$$

Pour tout $X, X' \in \mathbb{R}^3$ et tout $\lambda \in \mathbb{R}$, $u(\lambda X + X') = \lambda u(X) + u(X')$.

Conclusion : $u \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^4)$.

2.

$$\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(u) = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}.$$

3. Montrons que \mathscr{F} est libre.

Soient $a, b, c, d \in \mathbb{R}$ tels que $af_1 + bf_2 + cu(e_1) + du(e_2) = (0, 0, 0, 0)$. Alors

a(1,0,0,0) + b(0,1,0,0) + c(-1,1,-1,0) + d(1,-1,0,-1) = (0,0,0,0),

donc

$$\begin{cases} a - c + d = 0 \\ b + c - d = 0 \\ -c = 0 \\ -d = 0 \end{cases},$$

d'où a = b = c = d = 0 et \mathscr{F} est libre.

De plus $\operatorname{Card}(\mathscr{F}) = \dim(\mathbb{R}^4)$, donc \mathscr{F} est une base de \mathbb{R}^4 .

4. $u(e_1) = 0 \times f_1 + 0 \times f_2 + 1 \times u(e_1) + 0 \times u(e_2)$, donc

$$\operatorname{Mat}_{\mathscr{F}}(u(e_1)) = \left(egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}\right).$$

 $u(e_1) = 0 \times f_1 + 0 \times f_2 + 0 \times u(e_1) + 1 \times u(e_2)$, donc

$$\operatorname{Mat}_{\mathscr{F}}(u(e_2)) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

 $u(e_3) = (0, 0, 1, 1) = 0 \times f_1 + 0 \times f_2 + (-1) \times u(e_1) + (-1) \times u(e_2)$, donc

$$\operatorname{Mat}_{\mathscr{F}}(u(e_3)) = \begin{pmatrix} 0 \\ 0 \\ -1 \\ -1 \end{pmatrix}.$$

Conclusion:

$$\operatorname{Mat}_{\mathscr{B},\mathscr{F}}(u) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{array}\right).$$

Exercice 12. Soient $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 , $w_1 = (1, -2, 0)$, $w_2 = (-1, 2, 0)$, $w_3 = (0, 0, 2)$ et u l'endomorphisme de \mathbb{R}^3 défini par la donnée des images des vecteurs de la base :

$$u(e_1) = w_1, u(e_2) = w_2, u(e_3) = w_3.$$

1. (a) Exprimer w_1, w_2, w_3 en fonction de e_1, e_2 et e_3 . En deduire la matrice de u dans \mathcal{B} .

- (b) Déterminer l'expression de u.
- 2. (a) Trouver une base de Ker(u) et une base de Im(u).
 - (b) Montrer que $Ker(u) \oplus Im(u) = \mathbb{R}^3$.
- 3. Déterminer $\operatorname{Ker}(u-Id)$ et $\operatorname{Im}(u-Id)$ où Id désigne l'identité de \mathbb{R}^3 . En deduire que u-Id est un automorphisme de \mathbb{R}^3 .

Correction.

1. (a)
$$w_1 = 1e_1 - 2e_2 + 0e_3$$
, $w_2 = -e_1 + 2e_2 + 0e_3$ et $w_3 = 0e_1 + 0e_2 + 2e_3$.

$$\mathrm{Mat}_{\mathscr{B}}(u) = \left(\begin{array}{rrr} 1 & -1 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right).$$

1. (b) Pour tout $(x, y, z) \in \mathbb{R}^3$,

$$u(x, y, z) = (x - y, -2x + 2y, 2z)$$
.

2. (a)

$$\operatorname{Ker}(u) = \operatorname{Vect}\left(\left(\begin{array}{c} 1\\1\\0 \end{array}\right)\right).$$

 $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ constitue une base de Ker(u).

$$\operatorname{Im}(u) = \operatorname{Vect}(u(e_1), u(e_2), u(e_3))$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{1} \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ \boxed{1} \end{pmatrix}\right).$$

$$\left(\left(\begin{array}{c} 1 \\ -2 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) \right) \text{ constitue une base de } \mathrm{Im}(u).$$

2. (b) Montrons que la réunion d'une base de $\mathrm{Ker}(u)$ et d'un base de $\mathrm{Im}(u)$ constitue une base de \mathbb{R}^3 .

On note
$$\mathscr{F} = \left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right).$$

Montrons que la famille \mathscr{F} est libre.

Soient a, b, c des réels tels que

$$a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Alors

$$\begin{cases} a+b=0\\ a-2b=0\\ c=0 \end{cases},$$

donc

$$\begin{cases} \boxed{a} + b = 0 \\ -3 \boxed{b} = 0 \\ \boxed{c} = 0 \end{cases}$$

D'où a = b = c = 0.

Donc \mathscr{F} est libre.

De plus $Card(\mathscr{F}) = \dim(\mathbb{R}^3)$, donc \mathscr{F} constirue une base de \mathbb{R}^3 .

Conclusion : $Ker(u) \oplus Im(u) = \mathbb{R}^3$.

3. $u-\mathrm{Id}$ est linéaire en tant que différence d'applications linéaires.

$$\operatorname{Mat}_{\mathscr{B}}(u-\operatorname{Id}) = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\operatorname{Mat}_{\mathscr{B}}(u-\operatorname{Id}) \sim \begin{pmatrix} 0 & -1 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $C_1 \leftrightarrow C_2$
$$\sim \begin{pmatrix} \boxed{-1} & 0 & 0 \\ 1 & \boxed{-2} & 0 \\ 0 & 0 & \boxed{1} \end{pmatrix}.$$

Donc $\operatorname{rg}(u - \operatorname{Id}) = \dim (\operatorname{Im}(u - \operatorname{Id})) = 3.$

De plus, $\text{Im}(u-\text{Id}) \subset \mathbb{R}^3$. D'où $\text{Im}(u-\text{Id}) = \mathbb{R}^3$ par égalité des dimensions.

On en déduit que u – Id est surjective.

Le théorème du rang assure que

$$\dim (\mathbb{R}^3) = \dim (\operatorname{Ker}(u - \operatorname{Id})) + \operatorname{rg}(u - \operatorname{Id}).$$

On en déduit que dim (Ker(u - Id)) = 0 et que u - Id est injective.

Conclusion : u - Id est un automorphisme de \mathbb{R}^3 .

Exercice 13. On note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\mathscr{C} = (f_1, f_2)$ celle de \mathbb{R}^2 . Soit $u \in \mathscr{L}(\mathbb{R}^3, \mathbb{R}^2)$ telle que

$$\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(u) = \left(\begin{array}{ccc} 2 & -1 & 1 \\ 3 & 2 & -3 \end{array} \right).$$

On pose

$$e'_1 = e_2 + e_3, \quad e'_2 = e_3 + e_1, \quad e'_3 = e_1 + e_2$$

et

$$f_1' = \frac{1}{2}(f_1 + f_2), \quad f_2' = \frac{1}{2}(f_1 - f_2).$$

- 1. Montrer que $\mathscr{B}' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 , puis que $\mathscr{C}' = (f'_1, f'_2)$ est une base de \mathbb{R}^2 .
- 2. Quelle est la matrice de u dans ces nouvelles bases?

Correction.

$$1. \ \mathscr{B}' = (e_1', e_2', e_3') = \left(\left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right) \right).$$

Montrons que \mathscr{B}' est libre.

Soient a, b, c des réels tels que

$$ae'_1 + be'_2 + ce'_3 = (0, 0, 0).$$

Alors

$$\begin{cases} b+c=0\\ a+c=0\\ a+b=0 \end{cases},$$

donc

$$\begin{cases} 2a = 0 & (L_2 + L_3 - L_1) \\ 2b = 0 & (L_1 + L_3 - L_2) \\ 2c = 0 & (L_1 + L_2 - L_3) \end{cases}$$

D'où a = b = c = 0 et \mathscr{B}' est libre.

De plus, $Card(\mathscr{B}') = dim(\mathbb{R}^3)$. Donc \mathscr{B}' constitue une base de \mathbb{R}^3 .

On montre de manière similaire que $\mathscr{C}' = (f'_1, f'_2) = \left(\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \right)$ constitue une base de \mathbb{R}^2 .

2. Première méthode : en utilisant la définition de $\operatorname{Mat}_{\mathscr{B}',\mathscr{C}'}(u)$.

On a
$$u(e'_1) = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = (-1) \times f'_1 + (1) \times f'_2,$$

$$u(e'_2) = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} = (3) \times f'_1 + (3) \times f'_2$$

et
$$u(e_3') = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} = (6) \times f_1' + (-4) \times f_2'.$$

Donc

$$\operatorname{Mat}_{\mathscr{B}',\mathscr{C}'}(u) = \left(\begin{array}{ccc} -1 & 3 & 6 \\ 1 & 3 & -4 \end{array}\right).$$

Deuxième méthode : en utilisant la formule de changement de bases.

$$\begin{aligned} \operatorname{Mat}_{\mathscr{B}',\mathscr{C}'}(u) &= \operatorname{Mat}_{\mathscr{C},\mathscr{C}'}(\operatorname{Id}) \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(u) \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(\operatorname{Id}) \\ &= \left(P_{\mathscr{C}}^{\mathscr{C}'}\right)^{-1} \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(u) P_{\mathscr{B}}^{\mathscr{B}'} \\ &= \left(\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & -1/2 \end{array}\right)^{-1} \left(\begin{array}{cc} 2 & -1 & 1 \\ 3 & 2 & -3 \end{array}\right) \left(\begin{array}{cc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right) \\ &= \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} 2 & -1 & 1 \\ 3 & 2 & -3 \end{array}\right) \left(\begin{array}{cc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right) \\ &= \left(\begin{array}{cc} -1 & 3 & 6 \\ 1 & 3 & -4 \end{array}\right). \end{aligned}$$

Exercice 14. Soit E un \mathbb{K} -espace vectoriel muni d'une base $\mathscr{B} = (e_1, e_2, e_3)$. Soit f l'endomorphisme de E dont la matrice dans \mathscr{B} est

$$A = \left(\begin{array}{ccc} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{array}\right).$$

Soit $\mathscr{B}' = (e'_1, e'_2, e'_3)$ la famille définie par

$$\begin{cases} e'_1 = e_1 + e_2 - e_3 \\ e'_2 = e_1 - e_3 \\ e'_3 = e_1 - e_2 \end{cases}.$$

- 1. Montrer que \mathscr{B}' est une base de E.
- 2. On pose $D = \operatorname{Mat}_{\mathscr{B}'}(f)$. Déterminer la matrice D.
- 3. On note P la matrice de passage de \mathscr{B} à \mathscr{B}' . Déterminer P et calculer P^{-1} .
- 4. Quelle relation lie les matrices A, D, P et P^{-1} ?
- 5. Calculer A^n pour tout $n \in \mathbb{N}$.

Correction.

1.

$$\operatorname{Mat}_{\mathscr{B}}(\mathscr{B}') = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ 1 & -1 & -2 \\ -1 & 0 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} \boxed{1} & 0 & 0 \\ 1 & \boxed{-1} & 0 \\ -1 & 0 & \boxed{1} \end{pmatrix}.$$

 $rg(\mathscr{B}') = 3 = Card(\mathscr{B}') \text{ donc } \mathscr{B}' \text{ est libre.}$

De plus, $\operatorname{Card}(\mathscr{B}') = \dim(E)$. La famille \mathscr{B}' constitue donc une base de E.

2. •

$$\operatorname{Mat}_{\mathscr{B}}(f(e'_{1})) = \operatorname{Mat}_{\mathscr{B}}(f) \times \operatorname{Mat}_{\mathscr{B}}(e'_{1})$$

$$= \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$$

Donc

$$f(e'_1) = e'_1$$

= $1e'_1 + 0e'_2 + 0e'_3$.

D'où

$$\operatorname{Mat}_{\mathscr{B}'}\left(f(e_1')\right) = \left(egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight).$$

•

$$\operatorname{Mat}_{\mathscr{B}}(f(e_2')) = \operatorname{Mat}_{\mathscr{B}}(f) \times \operatorname{Mat}_{\mathscr{B}}(e_2')$$

$$= \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}.$$

Donc

$$f(e'_2) = 2e'_2$$

= $0e'_1 + 2e'_2 + 0e'_3$.

D'où

$$\operatorname{Mat}_{\mathscr{B}'}\left(f(e_2')\right) = \left(egin{array}{c} 0 \ 2 \ 0 \end{array}
ight).$$

•

$$\operatorname{Mat}_{\mathscr{B}}(f(e_3')) = \operatorname{Mat}_{\mathscr{B}}(f) \times \operatorname{Mat}_{\mathscr{B}}(e_1')$$

$$= \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}.$$

Donc

$$f(e'_3) = 3e'_3$$

= $0e'_1 + 0e'_2 + 3e'_3$.

D'où

$$\operatorname{Mat}_{\mathscr{B}'}\left(f(e_3')\right) = \left(egin{array}{c} 0 \\ 0 \\ 3 \end{array} \right).$$

Conclusion:

$$D = \operatorname{Mat}_{\mathscr{B}'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

3

$$P = P_{\mathscr{B}}^{\mathscr{B}'} = \operatorname{Mat}_{\mathscr{B}}(\mathscr{B}') = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

Conclusion:
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}.$$

4. Formule de changement de bases :

$$\operatorname{Mat}_{\mathscr{B}'}(f) = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(\operatorname{Id}) \times \operatorname{Mat}_{\mathscr{B}}(f) \times \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(\operatorname{Id})$$

d'où

$$D = P^{-1}AP$$

ie

$$A = PDP^{-1}.$$

5. On montre par récurrence que pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.

or, pour tout
$$n \in \mathbb{N}$$
, $D^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}$, donc

$$A^{n} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3^{n} - 2^{n} + 1 & 1 - 2^{n} & 3^{n} - 2^{n+1} + 1 \\ 1 - 3^{n} & 1 & 1 - 3^{n} \\ 2^{n} - 1 & 2^{n} - 1 & 2^{n+1} - 1 \end{pmatrix}.$$

Conclusion : Pour tout $n \in \mathbb{N}$,

$$A^{n} = \begin{pmatrix} 3^{n} - 2^{n} + 1 & 1 - 2^{n} & 3^{n} - 2^{n+1} + 1 \\ 1 - 3^{n} & 1 & 1 - 3^{n} \\ 2^{n} - 1 & 2^{n} - 1 & 2^{n+1} - 1 \end{pmatrix}.$$

Exercice 15. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ représenté dans la base canonique \mathscr{B} par :

$$\left(\begin{array}{ccc} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{array}\right).$$

- 1. Soit $\mathscr{C} = (e'_1, e'_2, e'_3)$ avec $e'_1 = (1, 0, 1)$, $e'_2 = (-1, 1, 0)$ et $e'_3 = (1, 1, 1)$. Montrer que \mathscr{C} est une base de \mathbb{R}^3 .
- 2. Déterminer la matrice de f dans \mathscr{C} .
- 3. Calculer la matrice de f^n dans \mathscr{B} pour tout $n \in \mathbb{N}$.

Correction.

1. On montre que \mathscr{C} est libre. De plus $\operatorname{Card}(\mathscr{C}) = \dim(\mathbb{R}^3)$. La famille \mathscr{C} constitue donc une base de \mathbb{R}^3 .

2. •

$$\operatorname{Mat}_{\mathscr{B}}(f(e'_{1})) = \operatorname{Mat}_{\mathscr{B}}(f) \times \operatorname{Mat}_{\mathscr{B}}(e'_{1})$$

$$= \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$= \operatorname{Mat}_{\mathscr{B}}(e'_{1})$$

Donc $f(e'_1) = e'_1 = 1e'_1 + 0e'_2 + 0e'_3$ et $Mat_{\mathscr{B}'}(f(e'_1)) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

•

$$\operatorname{Mat}_{\mathscr{B}}(f(e_2')) = \operatorname{Mat}_{\mathscr{B}}(f) \times \operatorname{Mat}_{\mathscr{B}}(e_2')$$

$$= \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$= \operatorname{Mat}_{\mathscr{B}}(e_2')$$

Donc
$$f(e'_2) = e'_2 = 0e'_1 + 1e'_2 + 0e'_3$$
 et $Mat_{\mathscr{B}'}(f(e'_2)) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

•

$$\operatorname{Mat}_{\mathscr{B}}(f(e_3')) = \operatorname{Mat}_{\mathscr{B}}(f) \times \operatorname{Mat}_{\mathscr{B}}(e_3')$$

$$= \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

$$= \operatorname{Mat}_{\mathscr{B}}(e_1' + e_3')$$

Donc
$$f(e'_3) = e'_1 + e'_3 = 1e'_1 + 0e'_2 + 1e'_3$$
 et $Mat_{\mathscr{B}'}(f(e'_3)) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Conclusion:

$$\operatorname{Mat}_{\mathscr{B}'}(f) = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

3. Pour tout $n \in \mathbb{N}$,

$$\operatorname{Mat}_{\mathscr{B}'}(f^n) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (à démontrer par récurrence).

D'après la formule de changement de bases, on a

$$\operatorname{Mat}_{\mathscr{B}}(f^{n}) = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(\operatorname{Id}) \operatorname{Mat}_{\mathscr{B}'}(f^{n}) \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(\operatorname{Id}) \\
= P_{\mathscr{B}}^{\mathscr{B}'} \operatorname{Mat}_{\mathscr{B}'}(f^{n}) \left(P_{\mathscr{B}}^{\mathscr{B}'}\right)^{-1} \\
= \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \\
= \begin{pmatrix} n+1 & n & -n \\ 0 & 1 & 0 \\ n & n & 1-n \end{pmatrix}.$$

Conclusion:

$$\operatorname{Mat}_{\mathscr{B}}(f^n) = \left(\begin{array}{ccc} n+1 & n & -n \\ 0 & 1 & 0 \\ n & n & 1-n \end{array}\right).$$

Projections et symétries

Exercice 16. Montrer que l'application

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \mapsto (4x - 2y, 6x - 3y)$$

est une projection et déterminer ses caractéristiques géométriques.

Correction.

f est une projection si et seulement si f est linéaire et $f \circ f = f$. Montrons que f est linéaire.

Soient X=(x,y) et X'=(x',y') des éléments de \mathbb{R}^2 et $\lambda\in\mathbb{R}$.

$$f(\lambda X + X') = f(\lambda x + x', \lambda y + y')$$

$$= (4(\lambda x + x') - 2(\lambda y + y'), 6(\lambda x + x') - 3(\lambda y + y'))$$

$$= \lambda (4x - 2y, 6x - 3y) + (4x' - 2y', 6x' - 3y')$$

$$= \lambda f(X) + f(X').$$

Pour tout $X, X' \in \mathbb{R}^2$ et tout $\lambda \in \mathbb{R}$, $f(\lambda X + X') = \lambda f(X) + f(X')$. $f \in \mathcal{L}(\mathbb{R}^2)$.

Soit $(x, y) \in \mathbb{R}^2$.

$$f \circ f(x,y) = f(f(x,y))$$

$$= f(4x - 2y, 6x - 3y)$$

$$= (4(4x - 2y) - 2(6x - 3y), 6(4x - 2y) - 3(6x - 3y))$$

$$= (16x - 8y - 12x + 6y, 24x - 12y - 18x + 9y)$$

$$= (4x - 2y, 6x - 3y)$$

$$= f(x, y).$$

Donc pour tout $(x,y) \in \mathbb{R}^2$, $f \circ f(x,y) = f(x,y)$.

Conclusion : f est une projection sur Im(f) parallèlement à Ker(f).

$$\operatorname{Ker}(f) = \operatorname{Vect}\left(\left(\begin{array}{c} 1\\ 2 \end{array}\right)\right)$$

et

$$\operatorname{Im}(f) = \operatorname{Vect}(f(1,0), f(0,1))$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 4 \\ 6 \end{pmatrix}, \begin{pmatrix} -2 \\ -3 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ -3 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} \boxed{2} \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}\right)$$

$$= \operatorname{Vect}\left(\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right).$$

Conclusion : f est une projection sur Vect $\left(\begin{pmatrix}2\\3\end{pmatrix}\right)$ parallèlement à Vect $\left(\begin{pmatrix}1\\2\end{pmatrix}\right)$.

Exercice 17. Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice :

$$A = \left(\begin{array}{rrr} 3 & 4 & 4 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{array}\right).$$

Montrer que f est une symétrie et déterminer ses caractéristiques géométriques.

Correction.

$$f$$
 est une symétrie $\iff f \circ f = \mathrm{Id}_{\mathbb{R}^3}$
 $\iff A \times A = \mathrm{I}_3.$

Or

$$A^{2} = \begin{pmatrix} 3 & 4 & 4 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix} \times \begin{pmatrix} 3 & 4 & 4 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} (9 - 4 - 4) & (12 - 4 - 8) & (12 - 8 - 4) \\ (-3 + 1 + 2) & (-4 + 1 + 4) & (-4 + 2 + 2) \\ (-3 + 2 + 1) & (-4 + 2 + 2) & (-4 + 4 + 1) \end{pmatrix}$$

$$= I_{3},$$

Donc f est une symétrie.

Rappel cours : f est une symétrie par rapport à $\operatorname{Ker}(f - \operatorname{Id}_{\mathbb{R}^3})$ parallèlement à $\operatorname{Ker}(f + \operatorname{Id}_{\mathbb{R}^3})$.

On note ${\mathscr B}$ la base canonique de ${\mathbb R}^3$. Alors :

D'une part,

$$\operatorname{Mat}_{\mathscr{B}}(f - \operatorname{Id}_{\mathbb{R}^3}) = \operatorname{Mat}_{\mathscr{B}}(f) - \operatorname{Mat}_{\mathscr{B}}(\operatorname{Id}_{\mathbb{R}^3})$$

$$= \begin{pmatrix} 3 & 4 & 4 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 4 & 4 \\ -1 & -2 & -2 \\ -1 & -2 & -2 \end{pmatrix}$$

 et

$$\operatorname{Ker}(f - \operatorname{Id}_{\mathbb{R}^3}) = \left\{ \begin{pmatrix} -2y - 2z \\ y \\ z \end{pmatrix} \middle| (y, z) \in \mathbb{R}^2 \right\}$$
$$= \operatorname{Vect}\left(\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right).$$

D'autre part,

$$\operatorname{Mat}_{\mathscr{B}}(f + \operatorname{Id}_{\mathbb{R}^{3}}) = \operatorname{Mat}_{\mathscr{B}}(f) + \operatorname{Mat}_{\mathscr{B}}(\operatorname{Id}_{\mathbb{R}^{3}})$$

$$= \begin{pmatrix} 3 & 4 & 4 \\ -1 & -1 & -2 \\ -1 & -2 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 4 & 4 \\ -1 & 0 & -2 \\ -1 & -2 & 0 \end{pmatrix}$$

et

$$\operatorname{Ker}\left(f + \operatorname{Id}_{\mathbb{R}^{3}}\right) = \left\{ \begin{pmatrix} -2z \\ z \\ z \end{pmatrix} \middle| z \in \mathbb{R}^{2} \right\}$$
$$= \operatorname{Vect}\left(\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \right).$$

Conclusion :
$$f$$
 est la symétrie par rapport à Vect $\begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$ parallèlement à Vect $\begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$.

Exercice 18. On se place dans \mathbb{R}^3 muni de la base canonique $\mathscr{B} = (e_1, e_2, e_3)$. On considère le plan \mathscr{P} et la droite \mathscr{D} d'équations respectives :

$$\mathscr{P}: x + 2y - z = 0$$
 et $\mathscr{D}: \left\{ \begin{array}{l} x + y = 0 \\ y + z = 0 \end{array} \right.$

- 1. Montrer que \mathscr{P} et \mathscr{D} sont supplémentaires. Trouver une base de \mathscr{P} et une base de \mathscr{D} . On note \mathscr{B}' la réunion de ces deux bases.
- 2. On note p la projection sur $\mathscr P$ parallèlement à $\mathscr D$. Déterminer la matrice de p dans la base $\mathscr B'$. En déduire la matrice de p dans la base canonique $\mathscr B$.
- 3. Faire de même avec la symétrie s par rapport à $\mathcal P$ parallèlement à $\mathcal D$.

Correction.

1.

$$\mathscr{P} = \left\{ \begin{pmatrix} x \\ y \\ x + 2y \end{pmatrix} \middle| (x, y) \in \mathbb{R}^2 \right\}$$
$$= \operatorname{Vect} \left(\begin{pmatrix} \boxed{1} \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ \boxed{1} \\ 2 \end{pmatrix} \right).$$

On note
$$(u, v) = \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right)$$
. (u, v) est une base de \mathscr{P} .

$$\mathscr{D} = \left\{ \begin{pmatrix} x \\ -x \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$
$$= \operatorname{Vect} \left(\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right).$$

On note
$$w = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
. (w) est une base de \mathscr{D} .

On note $\mathscr{B}' = (u, v, w)$.

 \mathscr{B}' est une famille libre de vecteurs de \mathbb{R}^3 (le vérifier) et $\operatorname{Card}(\mathscr{B}') = \dim(\mathbb{R}^3)$. \mathscr{B}' est donc une base de \mathbb{R}^3 .

En montrant que \mathscr{B}' , réunion d'une base de \mathscr{P} et d'une base de \mathscr{D} , est une base de \mathbb{R}^3 , on montre que \mathscr{P} et \mathscr{D} sont des sous-espaces vectoriels supplémentaires de $\mathbb{R}^3: \mathscr{P} \oplus \mathscr{D} = \mathbb{R}^3$.

2. p est la projection sur \mathscr{P} parallèlement à \mathscr{D} .

Matrice de p dans la base \mathscr{B}' ?

Comme
$$u \in \mathscr{P}, p(u) = u = 1 \times u + 0 \times v + 0 \times w$$
 et $\operatorname{Mat}_{\mathscr{B}'}(p(u)) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Comme
$$v \in \mathscr{P}, p(v) = v = 0 \times u + 1 \times v + 0 \times w$$
 et $\operatorname{Mat}_{\mathscr{B}'}(p(v)) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

Comme
$$w \in \mathcal{D}$$
, $p(w) = 0 = 0 \times u + 0 \times v + 0 \times w$ et $\operatorname{Mat}_{\mathscr{B}'}(p(w)) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

D'où

$$\operatorname{Mat}_{\mathscr{B}'}(p) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Matrice de p dans la base \mathscr{B} ?

D'après la formule de changement de bases, on a

$$\begin{aligned} \operatorname{Mat}_{\mathscr{B}}(p) &= \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(\operatorname{Id}) \times \operatorname{Mat}_{\mathscr{B}'}(p) \times \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(\operatorname{Id}) \\ &= P_{\mathscr{B}}^{\mathscr{B}'} \times \operatorname{Mat}_{\mathscr{B}'}(p) \times \left(P_{\mathscr{B}}^{\mathscr{B}'}\right)^{-1} \\ &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \frac{1}{2} \begin{pmatrix} 3 & 2 & -1 \\ -1 & 0 & 1 \\ -1 & -2 & 1 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 3 & 2 & -1 \\ -1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}. \end{aligned}$$

Conclusion:

$$\operatorname{Mat}_{\mathscr{B}}(p) = \frac{1}{2} \begin{pmatrix} 3 & 2 & -1 \\ -1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$$

3. On sait que $s=2p-\mathrm{Id}$. Donc

$$\begin{aligned} \operatorname{Mat}_{\mathscr{B}}(s) &= 2\operatorname{Mat}_{\mathscr{B}}(p) - \operatorname{Mat}_{\mathscr{B}}(\operatorname{Id}) \\ &= \begin{pmatrix} 3 & 2 & -1 \\ -1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix}. \end{aligned}$$

 ${\bf Conclusion:}$

$$\operatorname{Mat}_{\mathscr{B}}(s) = \left(\begin{array}{ccc} 2 & 2 & -1 \\ -1 & -1 & 1 \\ 1 & 2 & 0 \end{array} \right).$$