Feuille d'exercices n°3 Fonctions usuelles

Fonctions logarithmes, exponentielles et puissances

Exercice 1. Simplifier les expressions suivantes :

1.
$$\exp(3) \exp(5)$$

2.
$$\exp(-2) \exp(4)$$

3.
$$\frac{1}{\exp(-5)}$$

4.
$$(\exp(5))^3$$

Exercice 2. Simplifier les expressions suivantes :

1.
$$e^3 e^4$$

1.
$$e^3 e^4$$
 2. $e^4 e^{-4}$

3.
$$\frac{e^5e^{-3}}{e^{-2}}$$

$$4. e^5 e$$

4.
$$e^5 e$$
 5. $(e^4)^3 e^4$

3.
$$\frac{e^{5}e^{-3}}{e^{-2}}$$
6.
$$\frac{e^{6} - e^{3}}{ee^{2}}$$

7.
$$ee^5 + 5(e^2)^3$$

8.
$$(e^3)^{-2}e^5$$

7.
$$ee^5 + 5(e^2)^3$$
 8. $(e^3)^{-2} e^5$ 9. $\frac{e - \sqrt{e}}{\sqrt{e} - 1}$

Exercice 3. Simplifier les expressions suivantes :

1.
$$e^x e^{-x}$$

2.
$$e^x e^{-x+1}$$

3.
$$e \times e^{-x}$$

$$4. \ \frac{e^{2x}}{e^{2-x}}$$

5.
$$(e^{-x})^2$$

1.
$$e^{x}e^{-x}$$
 2. $e^{x}e^{-x+1}$ 3. $e \times e^{-x}$
4. $\frac{e^{2x}}{e^{2-x}}$ 5. $(e^{-x})^{2}$ 6. $e^{x}(e^{x}+e^{-x})$

7.
$$(e^x)^5 (e^{-2x})^2$$
 8. $\frac{(e^x)^3}{e^{2x}}$

$$8. \ \frac{(e^x)^3}{e^{2x}}$$

9.
$$e^{-3x+1} (e^x)^3$$

10.
$$\sqrt{e^{-2x}}$$

10.
$$\sqrt{e^{-2x}}$$
 11. $(xe^x)^{-2}$

12.
$$\frac{e^{-4x}e}{(e^{-x})^2}$$

Exercice 4. Simplifier les expressions suivantes :

1.
$$(e^x + e^{-x})^2 - (e^x - e^{-x})^2$$

1.
$$(e^x + e^{-x})^2 - (e^x - e^{-x})^2$$
 2. $(e^x - e^{-x})^2 - e^{-x}(e^{3x} - e^{-x})$

3.
$$(e^x - e^{-x})(e^{2x} + e^x + 1)$$

3.
$$(e^x - e^{-x})(e^{2x} + e^x + 1)$$
 4. $(e^{3x})^2 + (e^{-3x})^2 - (e^{3x} - e^{-3x})^2$

5.
$$(e^{3x})^2 - e^{2x} (e^{2x} + e^{-2})^2$$

Exercice 5. Résoudre les équations suivantes dans \mathbb{R} :

1.
$$\exp(x) = \epsilon$$

2.
$$\exp(-x) = 1$$

3.
$$\exp(2x-1)=\epsilon$$

4.
$$e^{x^2+x}=1$$

5.
$$e^x - e^{-x} = 0$$

1.
$$\exp(x) = e$$

2. $\exp(-x) = 1$
3. $\exp(2x - 1) = e$
4. $e^{x^2 + x} = 1$
5. $e^x - e^{-x} = 0$
6. $e^{x^2 + 5} = (e^{x + 2})^2$
7. $e^x + e^{-x} = 0$
8. $e^{3x+1} = e^{-2x+3}$
9. $e^{2x} - 1 = 0$

7.
$$e^x + e^{-x} = 0$$

8.
$$e^{3x+1} = e^{-2x+3}$$

9.
$$e^{2x} - 1 = 0$$

Exercice 6. Résoudre les inéquations suivantes dans \mathbb{R} :

1.
$$\exp(x) < e$$
 2. $\exp(-x) \ge 1$ 3. $e^{2x-1} > e^x$

$$2. \exp(-x) \geqslant 1$$

3.
$$e^{2x-1} > e^x$$

4.
$$e^x + e^{-x} < 2$$

5.
$$e^x < 1$$

6.
$$e^{-x} > 0$$

7.
$$e^{-x} > 1$$

$$8 e^{x} - e^{-x} > 0$$

4.
$$e^{x} + e^{-x} < 2$$
 5. $e^{x} < 1$ 6. $e^{-x} > 0$ 7. $e^{-x} > 1$ 8. $e^{x} - e^{-x} > 0$ 9. $xe^{-x} - 3e^{-x} < 0$

Exercice 7. Dans cet exercice, on cherche a résoudre une équation non simple avec des exponentielles.

- 1. Déterminer les racines du polynôme $P(X) = X^2 + 4X 5$.
- 2. En déduire les solutions de l'équation $e^{2x} + 4e^x = 5$.
- 3. Résoudre les équations suivantes :

(a)
$$e^{2x} + e^x - 2 = 0$$

(b)
$$e^{2x+1} + e^{x+1} - 2e = 0$$

(c)
$$e^x - 2e^{-x} + 1 = 0$$

Exercice 8. Résoudre sur \mathbb{R} les inéquations suivantes :

1.
$$\frac{e^x + 3}{e^x - 1} >$$

$$2. -e^{2x} - e^x + 2 > 0$$

1.
$$\frac{e^x + 3}{e^x + 1} > 0$$
 2. $-e^{2x} - e^x + 2 > 0$ 3. $e^{2x} + 2e^x - 3 \ge 0$

Exercice 9. Résoudre dans \mathbb{R} .

1.
$$e^{x^2+2} = \frac{e^{2x}}{e}$$

$$2. \ 2e^{2x} + 5e^x + 3 = 0$$

1.
$$e^{x^2+2} = \frac{e^{2x}}{e}$$

2. $2e^{2x} + 5e^x + 3 = 0$
3. $e^x + e^{-x} > \sqrt{e} + \frac{1}{\sqrt{e}}$
4. $e^{x^2} + 1 \le 2$

4.
$$e^{x^2} + 1 \le 2$$

Exercice 10. Dans chacun des cas, pour quelles valeurs de x, l'expression donnée a-t-elle un sens?

1.
$$ln(x)$$

2.
$$\ln(3-x)$$

3.
$$\ln(x+2)$$

2.
$$\ln(3-x)$$
 3. $\ln(x+2)$ 4. $\frac{1}{\ln(x^2)}$

Exercice 11. Simplifier.

1.
$$e^{\ln 3}$$

$$2 e^{-\ln 5}$$

1.
$$e^{\ln 3}$$
 2. $e^{-\ln 5}$ 3. $e^{\ln(\frac{1}{3})}$

4.
$$\ln(e^5)$$

5.
$$\ln 1 + \ln e$$
 6. $\ln(e^{-2})$

6.
$$\ln(e^{-2})$$

Exercice 12. Exprimer chacun des nombres suivants sous la forme $\ln c$ où c est un réel strictement positif.

1.
$$C = \ln 7 + \ln 8$$

2.
$$H = \ln 20 - \ln 4$$

3.
$$A = -\ln 4 + \ln 28$$
 4. $T = -2\ln 4$

4.
$$T = -2 \ln 4$$

Exercice 13. Résoudre les équations suivantes.

1.
$$e^x = 2$$

2.
$$e^x = -5$$

3.
$$e^x = \frac{1}{4}$$

3.
$$e^{x} = \frac{1}{4}$$

4. $\ln x = \ln \left(\frac{1}{2}\right)$
5. $\ln(x) = \frac{\ln 5}{2}$
6. $\ln(x) = -\ln 9$

5.
$$\ln(x) = \frac{\ln 5}{2}$$

$$6. \ln(x) = -\ln 9$$

7.
$$(\ln(x) - 2)(1 + \ln(x)) = 0$$
 8. $(e^x - 3)(e^x + 5) = 0$

8.
$$(e^x - 3)(e^x + 5) = 0$$

Exercice 14. Résoudre les inéquations suivantes.

1.
$$\ln(x) > 1$$

2.
$$\ln(x) > -2$$

1.
$$\ln(x) > 1$$
 2. $\ln(x) > -2$ 3. $\ln(x) < \frac{1}{2}$

4.
$$\ln(x) < 3$$

Exercice 15. Calculer les nombres réels suivants.

1.
$$\ln(0,5) + \ln 2$$

2.
$$3 \ln 2 - \ln 4$$

3.
$$(\ln(e^3))^2$$

4.
$$e^{\ln 2 + \ln 3}$$

Exercice 16. Exprimer les nombres suivants sous forme d'un entier ou d'un inverse entier.

1.
$$T = e^{2 \ln 3}$$

2.
$$R = e^{4 \ln 2}$$

3.
$$U = e^{-\ln 4}$$

2.
$$R = e^{4 \ln 2}$$
 3. $U = e^{-\ln 4}$ 4. $C = e^{-5 \ln 2}$

Exercice 17. Simplifier au maximum les expressions suivantes :

1.
$$M = e^{\ln 6 - 2 \ln 3}$$

2.
$$A = e^{3 \ln 2 - \ln 4 + 1}$$

3.
$$L = \frac{e^{\ln 5 - 1}}{e^{2 + \ln 5}}$$

3.
$$L = \frac{e^{\ln 5 - 1}}{e^{2 + \ln 5}}$$
 4. $T = \frac{e^{2 \ln 3 - \ln 2}}{e^{-3 \ln 2}}$

Exercice 18. Exprimer chacun des nombres suivants en fonction de

2.
$$\ln(\sqrt{2})$$

3.
$$\ln\left(\frac{1}{4}\right)$$

1.
$$\ln 8$$
 2. $\ln(\sqrt{2})$ 3. $\ln\left(\frac{1}{4}\right)$ 4. $3\ln 2 - \ln 16$

Exercice 19. Exprimer chacun des nombres suivants en fonction de $\ln 3$ et $\ln 7$.

1.
$$\ln\left(\frac{81}{7}\right)$$

2.
$$\ln 44$$

1.
$$\ln\left(\frac{81}{7}\right)$$
 2. $\ln 441$ 3. $\ln\left(\frac{49}{27}\right)$ 4. $\ln\sqrt{21}$

4.
$$\ln \sqrt{21}$$

Exercice 20. Résoudre les équations suivantes :

1.
$$\ln x = 2$$

2.
$$\ln x = -1$$

2.
$$\ln x = -1$$
 3. $3 \ln x - 9 = 0$

4.
$$\ln(x+5) = \ln 3$$
 5. $\ln(x^2) = \ln 9$ 6. $\ln(x^2+x) = \ln 6$

5.
$$\ln(x^2) = \ln x$$

6.
$$\ln(x^2 + x) = \ln 6$$

Exercice 21. Résoudre les équations suivantes :

1.
$$2 + 3 \ln x = 14$$

2. $\ln(x^2) = \ln 9$
3. $e^{2-3x} = 5$
4. $2e^{2x} - 10 = 0$

2.
$$\ln(x^2) = \ln 9$$

3.
$$e^{2-3x} = 5$$

4.
$$2e^{2x} - 10 =$$

$$5. \ln(2-x) + 1 = 0$$

5.
$$\ln(2-x) + 1 = 0$$
 6. $\ln(3x) - \ln(1-x) = \ln 2$.

Exercice 22. 1. Résoudre l'équation $X^2 - 2X - 15 = 0$.

2. En déduire les solutions des équations suivantes :

(a)
$$e^{2x} - 2e^x - 15 = 0$$
;

(b)
$$(\ln x)^2 - 2\ln x - 15 = 0$$

Exercice 23. Résoudre les équations suivantes :

1.
$$e^{2x} - 4e^x + 3 = 0$$
,

2.
$$2(\ln x)^2 + 5 \ln x - 3 = 0$$
.

Exercice 24. Résoudre les inéquations suivantes :

1.
$$\ln(2-3x) \ge 0$$

2.
$$\ln(1-x) < 1$$

3.
$$\ln\left(\frac{3}{x}\right) > \ln 3$$
 4. $2\ln(x) \geqslant \ln(2-x)$

$$4. \ 2\ln(x) \geqslant \ln(2-x)$$

5.
$$\ln(x) + \ln(2x+5) \le \ln 3$$
 6. $\ln(4x) - \ln 2 < 2 \ln 4$.

6.
$$\ln(4x) - \ln 2 < 2 \ln 4$$
.

Exercice 25. Résoudre les inéquations suivantes :

1.
$$2e^x - 3 > 9$$

2.
$$4e^x - 1 \ge e^x + 5$$

3.
$$e^{2x} - 5e^x < 0$$

2.
$$4e^x - 1 \ge e^x + 5$$

4. $\ln(-2x + 1) \le 0$

5.
$$\ln\left(\frac{3x-1}{x+2}\right) \geqslant 0$$

6.
$$\ln(2x-1) + 1 > 0$$

Exercice 26. 1. Simplifier les écritures suivantes :

(1)
$$e^{\ln 3}$$

(2)
$$\frac{e^{3+\ln 8}}{e^{2+\ln 4}}$$

(3)
$$\ln 3 + \ln \frac{1}{3}$$

$$(4) \frac{1}{2} \ln \sqrt{2}$$

(5)
$$e^{\ln(x-1)+\ln x}$$

(6)
$$\ln(e^{\frac{1}{x}}) + e^{-\ln x}$$

(7)
$$2\sqrt{20} - \sqrt{45} + \sqrt{125}$$
 (8) $2\sqrt{32} - 3\sqrt{50} + 6\sqrt{8}$

(8)
$$2\sqrt{32} - 3\sqrt{50} + 6\sqrt{8}$$

(9)
$$(2\sqrt{2} - \sqrt{5})(\sqrt{2} + \sqrt{5})$$

(9)
$$(2\sqrt{2} - \sqrt{5})(\sqrt{2} + \sqrt{5})$$
 (10) $\frac{\sqrt{6}}{\sqrt{3} - \sqrt{2}} + \frac{3}{\sqrt{3} + \sqrt{2}}$

- 2. Exprimer les nombres suivants en fonction de ln 2 et ln 5 :
 - $(1) \ln 50$
 - (2) $\ln \frac{16}{25}$
 - $(3) \ln 250$
- 3. Démontrer que : $\ln(2+\sqrt{3}) + \ln(2-\sqrt{3}) = 0$.

Exercice 27. Résoudre dans \mathbb{R} les équations et inéquations suivantes après avoir déterminé leur domaine de validité :

$$(1) \ln(2 - 2x) = 1$$

(2)
$$\ln(x^2 - 8) = 0$$

(3)
$$e^{x+2} = 3$$

(1)
$$\ln(2-2x) = 1$$

 (2) $\ln(x^2 - 8) = 0$
 (3) $e^{x+2} = 3$
 (4) $(e^x + 1)(e^x - 4) = 0$

(5)
$$\ln(3x-4) = \ln(x^2-4)$$
 (6) $\ln(2x-1) > -1$

(6)
$$\ln(2x-1) > -1$$

(7)
$$e^{\frac{x+1}{x}} > 3$$

(8)
$$\ln(x-2) \leq \ln(2x-1)$$

(9)
$$\ln\left(1+\frac{2}{x}\right) \geqslant \ln(x)$$
 (10) $e^{2x} < 2e^x$

(10)
$$e^{2x} < 2e^x$$

$$(11) e^{4x} - 3e^{2x} - 4 = 0$$

(12)
$$\ln(5-x) - \ln 3 + \ln(x-1) \ge 0$$

Exercice 28. Soit $x \in \mathbb{R}^{+\star}$. On pose $a = \exp(x^2)$ et $b = \frac{1}{x} \ln \left(x^{\frac{1}{x}} \right)$. Simplifier l'expression a^b .

Exercice 29. Pour tout $x \in \mathbb{R}$, on pose

$$P(x) = 2x^3 + 5x^2 + x - 2.$$

- 1. Résoudre dans \mathbb{R} l'inéquation $P(x) \leq 0$.
- 2. En déduire l'ensemble des solutions de l'inéquation : $2 \ln x + \ln(2x + 5) \le \ln(2 - x)$.

Fonctions trigonométriques

Exercice 30. On donne

$$\cos \frac{\pi}{5} = \sqrt{\frac{3+\sqrt{5}}{8}}$$
 et $\sin \frac{\pi}{5} = \sqrt{\frac{5-\sqrt{5}}{8}}$.

- 1. Calculer $\pi \frac{\pi}{5}$, $\pi + \frac{\pi}{5}$, $\frac{\pi}{2} \frac{\pi}{5}$ et $\frac{\pi}{2} + \frac{\pi}{5}$
- 2. En déduire les valeurs exactes de :

$$\cos\frac{4\pi}{5}$$
, $\sin\frac{4\pi}{5}$, $\cos\frac{6\pi}{5}$, $\sin\frac{6\pi}{5}$, $\cos\frac{3\pi}{10}$, $\sin\frac{3\pi}{10}$, $\cos\frac{7\pi}{10}$ et $\sin\frac{7\pi}{10}$.

Exercice 31. On donne

$$\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 et $\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$.

En déduire les valeurs exactes de : $\sin \frac{11\pi}{12}$, $\cos \frac{13\pi}{12}$, $\cos \frac{5\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Exercice 32. On donne

$$\cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$$
 et $\sin\frac{2\pi}{5} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$.

En déduire les valeurs exactes de :

$$\sin \frac{3\pi}{5}$$
, $\cos \frac{3\pi}{5}$, $\sin \frac{9\pi}{8}$, $\cos \frac{9\pi}{8}$, $\sin \frac{3\pi}{8}$, $\cos \frac{3\pi}{8}$, $\sin \frac{5\pi}{8}$ et $\cos \frac{5\pi}{8}$.

Exercice 33. Exprimer les nombres suivants en fonction de $\cos x$ ou de $\sin x$:

1.
$$\sin(3\pi+x)$$
.

2.
$$\cos\left(\frac{5\pi}{2}-x\right)$$
.

3.
$$\cos\left(x-\frac{\pi}{2}\right)$$
.

4.
$$\cos\left(\frac{\pi}{2}+x\right)$$
.

5.
$$\sin(\pi - x) + \cos(\frac{\pi}{2} - x)$$
. 6. $3\sin(\pi + x) + 4\sin(x - \pi)$.

6.
$$3\sin(\pi + x) + 4\sin(x - \pi)$$

1. Étant donné que $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$, calculer les valeurs Exercice 34. exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

2. Déterminer les valeurs exactes de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Exercice 35. Démontrer que pour tous réels x et y, on a :

- 1. $\sin(x+y)\cos(x-y) = \sin x \cos x + \cos y \sin y$.
- 2. $1 \sin 2x = (\cos x \sin x)^2$.
- 3. $\cos\left(\frac{\pi}{4} + x\right) + \sin\left(\frac{\pi}{4} x\right) = \sqrt{2}\left(\cos x \sin x\right)$.

Exercice 36. 1. Simplifier l'expression suivante :

$$\cos\left(x + \frac{\pi}{4}\right) - \cos\left(x - \frac{\pi}{4}\right).$$

2. Établir l'égalité suivante : $\frac{\sin 5x}{\sin 2x} + \frac{\sin 2x}{\sin x} = \frac{(\sin 3x)^2}{\sin 2x \sin x}$

3. Résoudre dans $]-\pi$; π] l'équation suivante :

$$\frac{\sqrt{3}}{2}\cos(2x) + \frac{1}{2}\sin(2x) = \cos\frac{\pi}{7}.$$

Exercice 37. Résoudre dans $]-\pi$; π], puis dans \mathbb{R} , les équations suivantes:

1.
$$\cos(x) = \cos\left(\frac{\pi}{4}\right)$$
.

$$2. \sin(x) = \sin\left(-\frac{\pi}{6}\right).$$

$$3. \cos(2x) = \cos\left(\frac{\pi}{4}\right).$$

4.
$$\cos(x) = \cos\left(x + \frac{\pi}{4}\right)$$
.

5.
$$2\cos(2x) = 1$$
.

6.
$$\sin(3x) = \frac{\sqrt{3}}{2}$$
.

$$7. \cos(2x) = \cos(x).$$

8.
$$\sin(3x) = \cos(x)$$
.

Exercice 38. Résoudre dans $]-\pi$; $\pi]$, puis dans \mathbb{R} , les équations et inéquations suivantes :

$$1. \cos(x) = \frac{\sqrt{2}}{2}.$$

2.
$$\sin(x) = -\frac{1}{2}$$
.

3.
$$\sin(x) = \frac{\sqrt{3}}{2}$$
.

$$4. \ \frac{\sin(x)}{\cos x} = \frac{\sqrt{3}}{3}.$$

5.
$$\cos(x) = \frac{\sqrt{3}}{2}$$
.

$$6. \cos(x) = -\sin(x).$$

$$7. \sin(x) \leqslant \frac{\sqrt{3}}{2}.$$

8.
$$\cos(x) \geqslant -\frac{1}{2}$$
.

9.
$$\cos(x) < 0$$
.

10.
$$\cos\left(2x + \frac{\pi}{6}\right) = \frac{1}{2}$$
.

11.
$$\sin\left(3x - \frac{\pi}{3}\right) = -\frac{\sqrt{2}}{2}$$
.

12.
$$\sin\left(2x - \frac{\pi}{4}\right) = \cos x$$
.

13.
$$2\cos^2(x) - 3\cos(x) + 1 \ge 0$$
.

14.
$$2\sin^2(x) + 5\sin(x) + 2 < 0$$
.

Définition. Un angle orienté possède une infinité de mesures. Si x est l'une d'entre elles, toute autre mesure peut s'écrire $x+2k\pi$, où $k\in\mathbb{Z}$. La mesure principale d'un angle orienté est celle qui appartient à l'intervalle $|-\pi,\pi|$.

Exercice 39. Trouver les mesures principales, puis les valeurs exactes du sinus et du cosinus des angles suivants :

1.
$$\frac{7\pi}{6}$$

2.
$$\frac{4\pi}{3}$$

3.
$$\frac{717}{3}$$

1.
$$\frac{7\pi}{6}$$
 2. $\frac{4\pi}{3}$ 3. $\frac{71\pi}{3}$ 4. $-\frac{107\pi}{4}$ 5. $-\frac{13\pi}{6}$ 6. $\frac{130\pi}{7}$

5.
$$-\frac{13\pi}{6}$$

6.
$$\frac{130\pi}{7}$$

Exercice 40. Résoudre dans \mathbb{R} les équations suivantes, puis représenter les solutions sur le cercle unité :

- (1) $2\sin(x) + 1 = 0$ (2) $2\cos(x) + \sqrt{3} = 0$

- (3) $\sin(3x) = \sin(x)$ (4) $\cos(2x) = \cos(x + \frac{\pi}{4})$ (5) $4\sin^2(x) 1 = 0$ (6) $\sin(x + \frac{\pi}{4}) = \cos(x)$

Exercice 41. Résoudre dans $]-\pi,\pi]$ les inéquations suivantes :

- (1) $2\sin(x) + \sqrt{2} < 0$
- $(2) \ \sqrt{2}\cos(x) \geqslant 1$
- (3) $4\cos^2(x) 3 \le 0$ (4) $2\cos^2(x) 3\cos(x) 2 \le 0$

Exercice 42. Montrer que pour tout $(a, b) \in \mathbb{R}^2$,

$$\cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b) = \cos(2a).$$

Exercice 43. 1. Montrer que pour tout $x \in \mathbb{R}^+$, $\sin x \leq x$.

2. Montrer que pour tout $x \in \mathbb{R}$, $\cos x \ge 1 - \frac{x^2}{2}$.