Uniform simplification in the full neighborhood of a turning point

Charlotte Hulek

September 5, 2014

Plan of the talk

(1) Introduction and results
(2) Gevrey theory of composite asymptotic expansions
(3) Proof of the main result

Introduction

Consider the differential equation

$$
\varepsilon^{2} \frac{d^{2} y}{d x^{2}}-Q(x) y=0
$$

where

- $\varepsilon>0, \varepsilon \rightarrow 0$,
- $x \in[a, b]$,
- $Q:[a, b] \rightarrow \mathbb{R}$ of class C^{1}.

Introduction

Consider the differential equation

$$
\varepsilon^{2} \frac{d^{2} y}{d x^{2}}-Q(x) y=0
$$

where

- $\varepsilon>0, \varepsilon \rightarrow 0$,
- $x \in[a, b]$,
- $Q:[a, b] \rightarrow \mathbb{R}$ of class C^{1}.

Example

The Schrödinger equation (1925) :

$$
\frac{d^{2} y}{d x^{2}}-\frac{2 m}{\hbar^{2}}(V(x)-E) y=0
$$

Here \hbar plays the role of ε and $Q(x)=2 m(V(x)-E)$.

Liouville-Green (1837)

$$
\begin{equation*}
\varepsilon^{2} \frac{d^{2} y}{d x^{2}}-Q(x) y=0 \tag{1}
\end{equation*}
$$

Approximation of solutions:
If $Q(x)>0$,

$$
\begin{equation*}
\phi^{ \pm}(x, \varepsilon)=Q(x)^{-\frac{1}{4}} \exp \left(\pm \frac{1}{\varepsilon} \int^{x} \sqrt{Q(\xi)} d \xi\right) \tag{2}
\end{equation*}
$$

Liouville-Green (1837)

$$
\begin{equation*}
\varepsilon^{2} \frac{d^{2} y}{d x^{2}}-Q(x) y=0 \tag{1}
\end{equation*}
$$

Approximation of solutions:
If $Q(x)>0$,

$$
\begin{equation*}
\phi^{ \pm}(x, \varepsilon)=Q(x)^{-\frac{1}{4}} \exp \left(\pm \frac{1}{\varepsilon} \int^{x} \sqrt{Q(\xi)} d \xi\right) \tag{2}
\end{equation*}
$$

If $Q(x)<0$,

$$
\begin{equation*}
\psi^{ \pm}(x, \varepsilon)=(-Q(x))^{-\frac{1}{4}} \exp \left(\pm \frac{i}{\varepsilon} \int^{x} \sqrt{-Q(\xi)} d \xi\right) \tag{3}
\end{equation*}
$$

Liouville-Green (1837)

$$
\begin{equation*}
\varepsilon^{2} \frac{d^{2} y}{d x^{2}}-Q(x) y=0 \tag{1}
\end{equation*}
$$

Approximation of solutions:
If $Q(x)>0$,

$$
\begin{equation*}
\phi^{ \pm}(x, \varepsilon)=Q(x)^{-\frac{1}{4}} \exp \left(\pm \frac{1}{\varepsilon} \int^{x} \sqrt{Q(\xi)} d \xi\right) \tag{2}
\end{equation*}
$$

If $Q(x)<0$,

$$
\begin{equation*}
\psi^{ \pm}(x, \varepsilon)=(-Q(x))^{-\frac{1}{4}} \exp \left(\pm \frac{i}{\varepsilon} \int^{x} \sqrt{-Q(\xi)} d \xi\right) \tag{3}
\end{equation*}
$$

If $Q\left(x_{0}\right)=0$ and $Q^{\prime}\left(x_{0}\right) \neq 0$, then the functions (2) and (3) are no more approximations of the solutions.

Turning point

The zeros of $Q(x)$ separate regions with oscillating behavior from regions with exponential behavior.

Turning point

The zeros of $Q(x)$ separate regions with oscillating behavior from regions with exponential behavior.

Definition

The zeros of $Q(x)$ are called turning points.

Mathematical background

Consider the differential equation

$$
\begin{equation*}
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \tag{4}
\end{equation*}
$$

where

- x is a complex variable,
- ε is a small complex parameter,
- $A(x, \varepsilon)$ is a 2×2 matrix of holomorphic and bounded functions on $D\left(0, r_{0}\right) \times D\left(0, \varepsilon_{0}\right)$.

Mathematical background

Consider the differential equation

$$
\begin{equation*}
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \tag{4}
\end{equation*}
$$

where

- x is a complex variable,
- ε is a small complex parameter,
- $A(x, \varepsilon)$ is a 2×2 matrix of holomorphic and bounded functions on $D\left(0, r_{0}\right) \times D\left(0, \varepsilon_{0}\right)$.

The case «A(0,0) admits two distinct eigenvalues» is well known.

Mathematical background

Consider the differential equation

$$
\begin{equation*}
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \tag{4}
\end{equation*}
$$

where

- x is a complex variable,
- ε is a small complex parameter,
- $A(x, \varepsilon)$ is a 2×2 matrix of holomorphic and bounded functions on $D\left(0, r_{0}\right) \times D\left(0, \varepsilon_{0}\right)$.

The case «A(0,0$)$ admits two distinct eigenvalues» is well known.
Otherwise the point $x=0$ is a turning point for system (4).

Mathematical background

Consider the differential system

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

Let $A_{0}(x)$ be the matrix $A(x, 0)$.
We assume that:

- $A_{0}(0)$ admits a unique eigenvalue 0 ,
- $\operatorname{tr} A(x, \varepsilon) \equiv 0$,
- $\operatorname{det} A_{0}(x) \not \equiv 0$.

Mathematical background

Consider the differential system

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

Let $A_{0}(x)$ be the matrix $A(x, 0)$.
We assume that :

- $A_{0}(0)$ admits a unique eigenvalue 0 ,
- $\operatorname{tr} A(x, \varepsilon) \equiv 0$,
- $\operatorname{det} A_{0}(x) \not \equiv 0$.

In this case $A_{0}(x)$ admits two distinct eigenvalues when $x \neq 0$, which are equal at $x=0$.

Mathematical background

We can reduce the study to differential systems of this form

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

where

- $\operatorname{tr} A(x, \varepsilon) \equiv 0$,
- $A_{0}(x)=\left(\begin{array}{cc}0 & x^{\mu} \\ x^{\mu+\nu} & 0\end{array}\right)$, with $\mu, \nu \in \mathbb{N}$ and $\mu \nu \neq 0$.

Condition (\mathcal{C})

We consider the differential system

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

where

$$
A(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{cc}
\mathbf{a}(x, \varepsilon) & \mathbf{b}(x, \varepsilon) \\
\mathbf{c}(x, \varepsilon) & -\mathbf{a}(x, \varepsilon)
\end{array}\right)
$$

Condition (C)

We consider the differential system

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y
$$

where

$$
A(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{cc}
\mathbf{a}(x, \varepsilon) & \mathbf{b}(x, \varepsilon) \\
\mathbf{c}(x, \varepsilon) & -\mathbf{a}(x, \varepsilon)
\end{array}\right)
$$

Condition (\mathcal{C}):
(1) ν is even and $\mathbf{c}(x, 0)=\mathcal{O}\left(x^{\frac{1}{2}(\nu-2)}\right)$,
(2) ν is odd and $\mathbf{c}(x, 0)=\mathcal{O}\left(x^{\frac{1}{2}(\nu-1)}\right)$.

Simplification theorems

Hanson \& Russell (1967)

Hanson \& Russell (1967)

Theorem. If (\mathcal{C}) is satified, then there exists $\hat{T}(x, \varepsilon)=\sum_{n \geq 0} T_{n}(x) \varepsilon^{n}$, such that $\operatorname{det} T_{0}(x) \equiv 1$ and

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \underset{y=\hat{T}(x, \varepsilon) z}{\sim} \varepsilon \frac{d z}{d x}=\hat{B}(x, \varepsilon) z
$$

where

$$
\hat{B}(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{ll}
\hat{b}_{11}(x, \varepsilon) & \hat{b}_{12}(x, \varepsilon) \\
\hat{b}_{21}(x, \varepsilon) & \hat{b}_{22}(x, \varepsilon)
\end{array}\right)
$$

and the $\hat{b}_{i j}$ are polynomials in x :

Hanson \& Russell (1967)

Theorem. If (\mathcal{C}) is satified, then there exists $\hat{T}(x, \varepsilon)=\sum_{n \geq 0} T_{n}(x) \varepsilon^{n}$, such that $\operatorname{det} T_{0}(x) \equiv 1$ and

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \underset{y=\hat{T}(x, \varepsilon) z}{\sim} \varepsilon \frac{d z}{d x}=\hat{B}(x, \varepsilon) z
$$

where

$$
\hat{B}(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{ll}
\hat{b}_{11}(x, \varepsilon) & \hat{b}_{12}(x, \varepsilon) \\
\hat{b}_{21}(x, \varepsilon) & \hat{b}_{22}(x, \varepsilon)
\end{array}\right)
$$

and the $\hat{b}_{i j}$ are polynomials in x :

$$
\begin{aligned}
& \operatorname{deg}_{x} \hat{b}_{11}<\mu, \\
& \operatorname{deg}_{x} \hat{b}_{12}<\mu \\
& \operatorname{deg}_{x} \hat{b}_{21}<\mu+\nu \\
& \operatorname{deg}_{x} \hat{b}_{22}<\mu
\end{aligned}
$$

Main result

Main result

If (\mathcal{C}) is satisfied, then, $\forall r \in] 0, r_{0}[$ and for all sufficiently small open sector S with vertex in 0 , there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

Main result

If (\mathcal{C}) is satisfied, then, $\forall r \in] 0, r_{0}[$ and for all sufficiently small open sector S with vertex in 0 , there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

- $T(x, \varepsilon) \sim_{1} \hat{T}(x, \varepsilon)$, as $S \ni \varepsilon \rightarrow 0$ and $x \in D(0, r)$,

Main result

If (\mathcal{C}) is satisfied, then, $\forall r \in] 0, r_{0}[$ and for all sufficiently small open sector S with vertex in 0 , there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

- $T(x, \varepsilon) \sim_{1} \hat{T}(x, \varepsilon)$, as $S \ni \varepsilon \rightarrow 0$ and $x \in D(0, r)$,
- $\operatorname{det} T_{0}(x) \equiv 1$,

Main result

If (\mathcal{C}) is satisfied, then, $\forall r \in] 0, r_{0}$ [and for all sufficiently small open sector S with vertex in 0 , there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

- $T(x, \varepsilon) \sim_{1} \hat{T}(x, \varepsilon)$, as $S \ni \varepsilon \rightarrow 0$ and $x \in D(0, r)$,
- $\operatorname{det} T_{0}(x) \equiv 1$,

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \underset{y=T(x, \varepsilon) z}{\sim} \varepsilon \frac{d z}{d x}=B(x, \varepsilon) z
$$

where

$$
B(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{cc}
b_{11}(x, \varepsilon) & b_{12}(x, \varepsilon) \\
b_{21}(x, \varepsilon) & -b_{11}(x, \varepsilon)
\end{array}\right)
$$

and the $b_{i j}$ are polynomials in x :

Main result

If (\mathcal{C}) is satisfied, then, $\forall r \in] 0, r_{0}$ [and for all sufficiently small open sector S with vertex in 0 , there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

- $T(x, \varepsilon) \sim_{1} \hat{T}(x, \varepsilon)$, as $S \ni \varepsilon \rightarrow 0$ and $x \in D(0, r)$,
- $\operatorname{det} T_{0}(x) \equiv 1$,

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \underset{y=T(x, \varepsilon) z}{\sim} \varepsilon \frac{d z}{d x}=B(x, \varepsilon) z
$$

where

$$
B(x, \varepsilon)=A_{0}(x)+\varepsilon\left(\begin{array}{cc}
b_{11}(x, \varepsilon) & b_{12}(x, \varepsilon) \\
b_{21}(x, \varepsilon) & -b_{11}(x, \varepsilon)
\end{array}\right)
$$

and the $b_{i j}$ are polynomials in x :

$$
\begin{aligned}
& \operatorname{deg}_{x} b_{11}<\mu \\
& \operatorname{deg}_{x} b_{12}<\mu \\
& \operatorname{deg}_{x} b_{21}<\mu+\nu
\end{aligned}
$$

Known results

Known results

Recall :

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad \text { and } \quad A_{0}(x)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+\nu} & 0
\end{array}\right)
$$

Known results

Recall :

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad \text { and } \quad A_{0}(x)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+\nu} & 0
\end{array}\right) .
$$

The case $\mu=0$ is well known :

- Wasow treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x & 0\end{array}\right)$ in 1965,

Known results

Recall :

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad \text { and } \quad A_{0}(x)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+\nu} & 0
\end{array}\right) .
$$

The case $\mu=0$ is well known :

- Wasow treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x & 0\end{array}\right)$ in 1965,
- Lee treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x^{2} & 0\end{array}\right)$ in 1969,

Known results

Recall :

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad \text { and } \quad A_{0}(x)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+\nu} & 0
\end{array}\right) .
$$

The case $\mu=0$ is well known :

- Wasow treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x & 0\end{array}\right)$ in 1965,
- Lee treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x^{2} & 0\end{array}\right)$ in 1969,
- Sibuya treated the case $A_{0}(x)=\left(\begin{array}{cc}0 & 1 \\ x^{\nu} & 0\end{array}\right), \nu \in \mathbb{N}^{\star}$, in 1974.

Gevrey theory of composite asymptotic expansions

Notations

Notations

Let

- $S=\left\{\eta \in \mathbb{C}, 0<|\eta|<\eta_{0}\right.$ et $\left.\alpha_{0}<\arg \eta<\beta_{0}\right\}$,

Notations

Let

- $S=\left\{\eta \in \mathbb{C}, 0<|\eta|<\eta_{0}\right.$ et $\left.\alpha_{0}<\arg \eta<\beta_{0}\right\}$,
- $V(\eta)=\left\{x \in \mathbb{C}, \rho|\eta|<|x|<r\right.$ et $\left.\alpha^{\prime}<\arg x<\beta^{\prime}\right\}$,

Notations

Let

- $S=\left\{\eta \in \mathbb{C}, 0<|\eta|<\eta_{0}\right.$ et $\left.\alpha_{0}<\arg \eta<\beta_{0}\right\}$,
- $V(\eta)=\left\{x \in \mathbb{C}, \rho|\eta|<|x|<r\right.$ et $\left.\alpha^{\prime}<\arg x<\beta^{\prime}\right\}$,
- $V=\{\mathbf{X} \in \mathbb{C}, \rho<|\mathbf{X}|$ et $\alpha<\arg \mathbf{X}<\beta\}$.

Notations

Let

- $S=\left\{\eta \in \mathbb{C}, 0<|\eta|<\eta_{0}\right.$ et $\left.\alpha_{0}<\arg \eta<\beta_{0}\right\}$,
- $V(\eta)=\left\{x \in \mathbb{C}, \rho|\eta|<|x|<r\right.$ et $\left.\alpha^{\prime}<\arg x<\beta^{\prime}\right\}$,
- $V=\{\mathbf{X} \in \mathbb{C}, \rho<|\mathbf{X}|$ et $\alpha<\arg \mathbf{X}<\beta\}$.

We call (\mathcal{P}) the following property :
If $\eta \in S$ and $x \in V(\eta)$, then $\frac{x}{\eta} \in V$.

Formal composite series

Definition

A formal composite series associated to V and $D(0, r)$ is a series of this form

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

where
the $a_{n}(x)$ are holomorphic and bounded functions on $D(0, r)$, the $g_{n}(\mathbf{X})$ are holomorphic and bounded functions on V such that

$$
g_{n}(\mathbf{X}) \sim \sum_{m>0} g_{n m} \mathbf{X}^{-m}, \text { as } V \ni \mathbf{X} \rightarrow \infty
$$

Formal composite series

Definition

A formal composite series associated to V and $D(0, r)$ is a series of this form

$$
\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}
$$

where
the $a_{n}(x)$ are holomorphic and bounded functions on $D(0, r)$,
the $g_{n}(\mathbf{X})$ are holomorphic and bounded functions on V such that

$$
g_{n}(\mathbf{X}) \sim \sum_{m>0} g_{n m} \mathbf{X}^{-m}, \text { as } V \ni \mathbf{X} \rightarrow \infty
$$

The series $\sum_{n \geq 0} a_{n}(x) \eta^{n}$ is called the slow part of $\hat{y}(x, \eta)$. The series $\sum_{n \geq 0} g_{n}\left(\frac{x}{\eta}\right) \eta^{n}$ is called the fast part of $\hat{y}(x, \eta)$.

CAsE

Let $y(x, \eta)$ be a holomorphic and bounded function defined for $\eta \in S$ and for $x \in V(\eta)$, and let $\hat{y}(x, \eta)=\sum_{n \geq 0}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}$ be a formal composite series.

Definition

We say that y admits \hat{y} as composite asymptotic expansion (CAsE), as $\eta \rightarrow 0$ in S and $x \in V(\eta)$, if $\forall N \in \mathbb{N}, \exists K_{N}>0$,

$$
\left|y(x, \eta)-\sum_{n=0}^{N-1}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}\right| \leq K_{N}|\eta|^{N}
$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Gevrey CAsE

Definition

We say that y admits \hat{y} as CAsE of Gevrey order $\frac{1}{p}$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$, if $\exists C, L>0, \forall N \in \mathbb{N}$,

$$
\left|y(x, \eta)-\sum_{n=0}^{N-1}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}\right| \leq C L^{N} \Gamma\left(\frac{N}{p}+1\right)|\eta|^{N},
$$

for all $\eta \in S$ and all $x \in V(\eta)$ and

$$
g_{n}(\mathbf{X}) \sim_{\frac{1}{p}} \sum_{m>0} g_{n m} \mathbf{X}^{-m}, \text { as } V \ni \mathbf{X} \rightarrow \infty
$$

Gevrey CAsE

Definition

We say that y admits \hat{y} as CAsE of Gevrey order $\frac{1}{p}$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$, if $\exists C, L>0, \forall N \in \mathbb{N}$,

$$
\left|y(x, \eta)-\sum_{n=0}^{N-1}\left(a_{n}(x)+g_{n}\left(\frac{x}{\eta}\right)\right) \eta^{n}\right| \leq C L^{N} \Gamma\left(\frac{N}{p}+1\right)|\eta|^{N},
$$

for all $\eta \in S$ and all $x \in V(\eta)$ and

$$
g_{n}(\mathbf{X}) \sim_{\frac{1}{p}} \sum_{m>0} g_{n m} \mathbf{X}^{-m}, \text { as } V \ni \mathbf{X} \rightarrow \infty
$$

Notation: $y(x, \eta) \sim_{\frac{1}{p}} \hat{y}(x, \eta)$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$.

Consistent good covering

Consistent good covering

A consistent good covering (c.g.c.) is a collection $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta)$, $\ell=1, \ldots, L, j=1, \ldots, J$, such that

Consistent good covering

A consistent good covering (c.g.c.) is a collection $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta)$, $\ell=1, \ldots, L, j=1, \ldots, J$, such that

- $\left(S_{\ell}\right)_{\ell}$ is a good covering of $D\left(0, \eta_{0}\right)^{\star}$,

Consistent good covering

A consistent good covering (c.g.c.) is a collection $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta)$, $\ell=1, \ldots, L, j=1, \ldots, J$, such that

- $\left(S_{\ell}\right)_{\ell}$ is a good covering of $D\left(0, \eta_{0}\right)^{\star}$,
- $\left(V^{j}\right)_{j}$ is a good covering of $\{\mathbf{X} \in \mathbb{C},|\mathbf{X}|>\rho\}$,

Consistent good covering

A consistent good covering (c.g.c.) is a collection $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta)$, $\ell=1, \ldots, L, j=1, \ldots, J$, such that

- $\left(S_{\ell}\right)_{\ell}$ is a good covering of $D\left(0, \eta_{0}\right)^{\star}$,
- $\left(V^{j}\right)_{j}$ is a good covering of $\{\mathbf{X} \in \mathbb{C},|\mathbf{X}|>\rho\}$,
- for all $\eta \in S_{\ell}$,
$\left(V_{\ell}^{j}(\eta)\right)_{j}$ is a good covering of $\{x \in \mathbb{C}, \rho|\eta|<|x|<r\}$,

Consistent good covering

A consistent good covering (c.g.c.) is a collection $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta)$, $\ell=1, \ldots, L, j=1, \ldots, J$, such that

- $\left(S_{\ell}\right)_{\ell}$ is a good covering of $D\left(0, \eta_{0}\right)^{\star}$,
- $\left(V^{j}\right)_{j}$ is a good covering of $\{\mathbf{X} \in \mathbb{C},|\mathbf{X}|>\rho\}$,
- for all $\eta \in S_{\ell}$,
$\left(V_{\ell}^{j}(\eta)\right)_{j}$ is a consistent good covering of $\{x \in \mathbb{C}, \rho|\eta|<|x|<r\}$,
- if $\eta \in S_{\ell}$ and $x \in V_{\ell}^{j}(\eta)$, then $\frac{x}{\eta} \in V^{j}$.

Theorem of Fruchard-Schäfke A theorem of Ramis-Sibuya type

Theorem of Fruchard-Schäfke

A theorem of Ramis-Sibuya type

Let $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta), \ell=1, \ldots, L, j=1, \ldots, J$, be a consistent good covering and $V_{\ell}^{j}(\eta) \subset \tilde{V}_{\ell}^{j}(\eta)$. Let $\left(y_{\ell}^{j}(x, \eta)\right)_{j, \ell}$ be a collection of holomorphic and bounded functions defined for $\eta \in S_{\ell}$ and $x \in \tilde{V}_{\ell}^{j}(\eta)$ such that

Theorem of Fruchard-Schäfke

A theorem of Ramis-Sibuya type

Let $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta), \ell=1, \ldots, L, j=1, \ldots, J$, be a consistent good covering and $V_{\ell}^{j}(\eta) \subset \tilde{V}_{\ell}^{j}(\eta)$. Let $\left(y_{\ell}^{j}(x, \eta)\right)_{j, \ell}$ be a collection of holomorphic and bounded functions defined for $\eta \in S_{\ell}$ and $x \in \tilde{V}_{\ell}^{j}(\eta)$ such that

$$
\left|\left(y_{\ell+1}^{j}-y_{\ell}^{j}\right)(x, \eta)\right|=\mathcal{O}\left(\mathrm{e}^{-\frac{A}{|\eta|^{P}}}\right)
$$

Theorem of Fruchard-Schäfke

A theorem of Ramis-Sibuya type

Let $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta), \ell=1, \ldots, L, j=1, \ldots, J$, be a consistent good covering and $V_{\ell}^{j}(\eta) \subset \tilde{V}_{\ell}^{j}(\eta)$. Let $\left(y_{\ell}^{j}(x, \eta)\right)_{j, \ell}$ be a collection of holomorphic and bounded functions defined for $\eta \in S_{\ell}$ and $x \in \tilde{V}_{\ell}^{j}(\eta)$ such that

$$
\left|\left(y_{\ell}^{j+1}-y_{\ell}^{j}\right)(x, \eta)\right|=\mathcal{O}\left(\mathrm{e}^{-B\left|\frac{x}{\eta}\right|^{p}}\right)
$$

Theorem of Fruchard-Schäfke

A theorem of Ramis-Sibuya type

Let $S_{\ell}, V^{j}, V_{\ell}^{j}(\eta), \ell=1, \ldots, L, j=1, \ldots, J$, be a consistent good covering and $V_{\ell}^{j}(\eta) \subset \tilde{V}_{\ell}^{j}(\eta)$. Let $\left(y_{\ell}^{j}(x, \eta)\right)_{j, \ell}$ be a collection of holomorphic and bounded functions defined for $\eta \in S_{\ell}$ and $x \in \tilde{V}_{\ell}^{j}(\eta)$ such that

$$
\left|\left(y_{\ell+1}^{j}-y_{\ell}^{j}\right)(x, \eta)\right|=\mathcal{O}\left(e^{-\frac{A}{|\eta|^{p}}}\right)
$$

and

$$
\left|\left(y_{\ell}^{j+1}-y_{\ell}^{j}\right)(x, \eta)\right|=\mathcal{O}\left(\mathrm{e}^{-B\left|\frac{x}{\eta}\right|^{p}}\right) .
$$

Then

$$
\begin{gathered}
y_{\ell}^{j}(x, \eta) \sim_{\frac{1}{p}} \sum_{n \geq 0}\left(a_{n}(x)+g_{n}^{j}\left(\frac{x}{\eta}\right)\right) \eta^{n}, \\
g_{n}^{j}(\mathbf{X}) \sim_{\frac{1}{p}} \sum_{m>0} g_{n m} \mathbf{X}^{-m}, \text { as } V^{j} \ni \mathbf{X} \rightarrow \infty .
\end{gathered}
$$

Proof of the main result

The case ν even

Assume that ν is even : $\nu=2 \gamma$.
Consider the differential system

$$
\begin{equation*}
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \tag{5}
\end{equation*}
$$

where

$$
A(x, \varepsilon)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+2 \gamma} & 0
\end{array}\right)+\varepsilon\left(\begin{array}{cc}
\mathbf{a}(x, \varepsilon) & \mathbf{b}(x, \varepsilon) \\
\mathbf{c}(x, \varepsilon) & -\mathbf{a}(x, \varepsilon)
\end{array}\right) .
$$

In this case, the condition (\mathcal{C}) becomes $\mathbf{c}(x, 0)=\mathcal{O}\left(x^{\gamma-1}\right)$.

Steps of the proof

(1) Fundamental system of solutions
(2) Slow-fast factorization of a CAsE
(3) Analytic simplification

Fundamental system of solutions

Fundamental system of solutions

Proposition

Fundamental system of solutions of $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$:

$$
Y(x, \eta)=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) e^{\wedge(x, \eta)}
$$

where
η is a root of $\varepsilon, \varepsilon=\eta^{p}$, with $p=\mu+\gamma+1$,
Q admits a CAsE of Gevrey order $\frac{1}{p}$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$,
Λ is a diagonal matrix.

Preparation

(1) $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad$ where $A_{0}(x)=\left(\begin{array}{cc}0 & x^{\mu} \\ x^{\mu+2 \gamma} & 0\end{array}\right)$,

$$
\downarrow \quad y=T(x) u
$$

(2) $\varepsilon \frac{d u}{d x}=B(x, \varepsilon) u \quad$ where $B_{0}(x)=\left(\begin{array}{cc}-x^{p-1} & 0 \\ 0 & x^{p-1}\end{array}\right)$,

$$
\downarrow \quad u=\Phi(x, \eta) v \text { and } \varepsilon=\eta^{p}
$$

(3) $\eta^{p} \frac{d v}{d x}=C(x, \eta) v$ where $C(x, \eta)=\left(\begin{array}{cc}-x^{p-1}+\ldots & 0 \\ 0 & x^{p-1}+\ldots\end{array}\right)$.

Existence of ϕ

We precise now the second change of variables : $u=\Phi v$ and $\varepsilon=\eta^{p}$.
The matrix Φ is as follows :

$$
\Phi=\left(\begin{array}{cc}
1 & \phi^{-} \\
\phi^{+} & 1
\end{array}\right)
$$

Existence of ϕ

We precise now the second change of variables : $u=\Phi v$ and $\varepsilon=\eta^{p}$.
The matrix Φ is as follows :

$$
\Phi=\left(\begin{array}{cc}
1 & \phi^{-} \\
\phi^{+} & 1
\end{array}\right)
$$

The function ϕ^{+}, resp. ϕ^{-}, satisfies a Riccati equation :

$$
\eta^{p} \frac{d \phi}{d x}= \pm 2 x^{p-1} \phi+F^{ \pm}(\phi)(x, \eta)
$$

Existence of ϕ^{+}

$$
\eta^{p} \frac{d \phi^{+}}{d x}=2 x^{p-1} \phi^{+}+F^{+}\left(\phi^{+}\right)
$$

$\mathcal{M}_{k}=\{$ holomorphic functions $\phi(x, \eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$, $|\phi(x, \eta)| \leq k\}$

Existence of ϕ^{+}

$$
\eta^{p} \frac{d \phi^{+}}{d x}=2 x^{p-1} \phi^{+}+F^{+}\left(\phi^{+}\right)
$$

$\mathcal{M}_{k}=\{$ holomorphic functions $\phi(x, \eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$, $|\phi(x, \eta)| \leq k\}$

Consider the following mapping $\mathcal{T}: \mathcal{M}_{k} \rightarrow \mathcal{M}_{k}$,

$$
\phi \mapsto \frac{1}{\eta^{p}} \int_{\gamma_{x}} \mathrm{e}^{\frac{2}{p}\left(\frac{\chi^{p}}{\eta^{p}}-\frac{\xi^{p}}{\eta^{p}}\right)} F^{+}(\phi(\xi, \eta)) \mathrm{d} \xi .
$$

Existence of ϕ^{+}

$$
\eta^{p} \frac{d \phi^{+}}{d x}=2 x^{p-1} \phi^{+}+F^{+}\left(\phi^{+}\right)
$$

$\mathcal{M}_{k}=\{$ holomorphic functions $\phi(x, \eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$, $|\phi(x, \eta)| \leq k\}$

Consider the following mapping $\mathcal{T}: \mathcal{M}_{k} \rightarrow \mathcal{M}_{k}$,

$$
\phi \mapsto \frac{1}{\eta^{p}} \int_{\gamma_{x}} \mathrm{e}^{\frac{2}{p}\left(\frac{x^{p}}{\eta^{p}}-\frac{\xi^{p}}{\eta^{p}}\right)} F^{+}(\phi(\xi, \eta)) \mathrm{d} \xi .
$$

Banach fixed-point theorem \Rightarrow existence of ϕ^{+}
\Rightarrow existence of $\left(\phi^{+}\right)_{\ell}^{j}$

Existence of ϕ^{+}

$$
\eta^{p} \frac{d \phi^{+}}{d x}=2 x^{p-1} \phi^{+}+F^{+}\left(\phi^{+}\right)
$$

$\mathcal{M}_{k}=\{$ holomorphic functions $\phi(x, \eta)$ defined for $\eta \in S$ and $x \in \Omega(\eta)$, $|\phi(x, \eta)| \leq k\}$

Consider the following mapping $\mathcal{T}: \mathcal{M}_{k} \rightarrow \mathcal{M}_{k}$,

$$
\phi \mapsto \frac{1}{\eta^{p}} \int_{\gamma_{x}} \mathrm{e}^{\frac{2}{p}\left(\frac{x^{p}}{\eta^{p}}-\frac{\xi^{p}}{\eta^{p}}\right)} F^{+}(\phi(\xi, \eta)) \mathrm{d} \xi .
$$

Banach fixed-point theorem \Rightarrow existence of ϕ^{+}

$$
\Rightarrow \quad \text { existence of }\left(\phi^{+}\right)_{\ell}^{j}
$$

Theorem of Fruchard-Schäfke $\Rightarrow\left(\phi^{+}\right)_{\ell}^{j}(x, \eta) \sim_{\frac{1}{p}}\left(\hat{\phi}^{+}\right)^{j}(x, \eta)$

Summary

(1) $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \quad$ where $A_{0}(x)=\left(\begin{array}{cc}0 & x^{\mu} \\ x^{\mu+2 \gamma} & 0\end{array}\right)$,

$$
\downarrow \quad y=T(x) u
$$

(2) $\varepsilon \frac{d u}{d x}=B(x, \varepsilon) u \quad$ where $B_{0}(x)=\left(\begin{array}{cc}-x^{p-1} & 0 \\ 0 & x^{p-1}\end{array}\right)$,

$$
\downarrow \quad u=\Phi(x, \eta) v \text { and } \varepsilon=\eta^{p}
$$

(3) $\eta^{p} \frac{d v}{d x}=C(x, \eta) v$ where $C(x, \eta)=\left(\begin{array}{cc}-x^{p-1}+\ldots & 0 \\ 0 & x^{p-1}+\ldots\end{array}\right)$.

Fundamental system of solutions

We deduce the form of a fundamental system of solutions of $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$:

$$
Y(x, \eta)=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) \mathrm{e}^{\wedge(x, \eta)}
$$

Fundamental system of solutions

We deduce the form of a fundamental system of solutions of $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$:

$$
Y(x, \eta)=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) \mathrm{e}^{\wedge(x, \eta)}
$$

where
Q admits a CAsE of Gevrey order $\frac{1}{p}$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$,

Fundamental system of solutions

We deduce the form of a fundamental system of solutions of $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$:

$$
Y(x, \eta)=\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) \mathrm{e}^{\wedge(x, \eta)}
$$

where
Q admits a CAsE of Gevrey order $\frac{1}{p}$, as $\eta \rightarrow 0$ in S and $x \in V(\eta)$,
$\Lambda(x, \eta)=\left(\begin{array}{cc}-\frac{1}{p} \frac{x^{p}}{\eta^{p}}+R_{1}(\varepsilon) \log x & 0 \\ 0 & \frac{1}{p} \frac{x^{p}}{\eta^{p}}+R_{2}(\varepsilon) \log x\end{array}\right)$.

Slow-fast factorization

Slow-fast factorization

Theorem

For all $r \in] 0, r_{0}[$, there exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S, x \in V(\eta)$, such that

$$
\begin{gathered}
Q(x, \eta)=L(x, \varepsilon) \cdot R(x, \eta) \\
L(x, \varepsilon) \sim_{1} \sum_{n \geq 0} A_{n}(x) \varepsilon^{n}, \text { as } \varepsilon \rightarrow 0 \text { in } \tilde{S} \text { and }|x|<r
\end{gathered}
$$

and

$$
\begin{gathered}
R(x, \eta) \sim_{\frac{1}{\rho}} \sum_{n \geq 0} G_{n}\left(\frac{X}{\eta}\right) \eta^{n}, \text { as } \eta \rightarrow 0 \text { in } S \text { and } x \in V(\eta) \\
G_{n}(\mathbf{X}) \sim_{\frac{1}{\rho}} \sum_{m \geq 0} G_{n m} \mathbf{X}^{-m}, \text { as } \mathbf{X} \rightarrow \infty \text { in } V
\end{gathered}
$$

The matrix Y

The matrix Y

As $Q=L \cdot R$, we have

$$
\begin{aligned}
Y(x, \eta) & =\underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) Q(x, \eta) \mathrm{e}^{\wedge(x, \varepsilon)}}_{P(x, \varepsilon)} \\
& =\underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) L(x, \varepsilon)\left(\begin{array}{cc}
1 & 0 \\
0 & x^{-\gamma}
\end{array}\right)}\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \varepsilon)}
\end{aligned}
$$

Lemma

The matrix $Y(x, \eta)$ can be written

$$
Y(x, \eta)=P(x, \varepsilon)\left(\begin{array}{cc}
1 & 0 \\
0 & x^{\gamma}
\end{array}\right) R(x, \eta) e^{\wedge(x, \varepsilon)}
$$

where
P is a slow matrix, i.e.

$$
P(x, \varepsilon) \sim_{1} \sum_{n \geq 0} A_{n}(x) \varepsilon^{n}, \text { as } \tilde{S} \ni \varepsilon \rightarrow 0,|x|<r,
$$

R is a fast matrix, i.e.

$$
R(x, \eta) \sim_{\frac{1}{\rho}} \sum_{n \geq 0} G_{n}\left(\frac{x}{\eta}\right) \eta^{n}, \text { as } S \ni \eta \rightarrow 0, x \in V(\eta),
$$

Λ is a diagonal matrix.

Analytic simplification

Proposition

The change of variables $y=P(x, \varepsilon) w$ reduces the system $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$ to

$$
\varepsilon \frac{d w}{d x}=D(x, \varepsilon) w
$$

where $D(x, \varepsilon) \sim_{1} \hat{D}(x, \varepsilon)$,

$$
\hat{D}(x, \varepsilon)=\left(\begin{array}{cc}
\hat{d}_{11}(x, \varepsilon) & \hat{d}_{12}(x, \varepsilon) \\
\hat{d}_{21}(x, \varepsilon) & -\hat{d}_{11}(x, \varepsilon)
\end{array}\right)
$$

and the $\hat{d}_{i j}$ are polynomials in x such that

$$
\begin{aligned}
& \operatorname{deg}_{x} \hat{d}_{11} \leq \mu+\gamma \\
& \operatorname{deg}_{x} \hat{d}_{12}=\mu \\
& \operatorname{deg}_{x} \hat{d}_{21}=\mu+2 \gamma
\end{aligned}
$$

Proof.

On the one hand,

$$
D=P^{-1} A P-\varepsilon P^{-1} P^{\prime}
$$

and

$$
D(x, \varepsilon) \sim_{1} \hat{D}(x, \varepsilon)
$$

as $\varepsilon \rightarrow 0$ in \tilde{S} and $|x|<r$.
On the other hand, $W(x, \eta)=\left(\begin{array}{cc}1 & 0 \\ 0 & x^{\gamma}\end{array}\right) R(x, \eta) \mathrm{e}^{\wedge(x, \eta)}$ is a fundamental system of solutions of equation $\varepsilon \frac{d w}{d x}=D(x, \varepsilon) w$ and

$$
D(x, \varepsilon)=\varepsilon W^{\prime}(x, \eta) W(x, \eta)^{-1}
$$

\Rightarrow a bound for the degree of each entry of $\hat{D}(x, \varepsilon)$.

Let $\tilde{D}=\left(\begin{array}{cc}\tilde{d}_{11} & \tilde{d}_{12} \\ \tilde{d}_{22} & -\tilde{d}_{11}\end{array}\right)$ be a matrix of polynomials in x such that

$$
\tilde{D}(x, \varepsilon) \sim_{1} \hat{D}(x, \varepsilon)
$$

as $\varepsilon \rightarrow 0$ in \tilde{S} and $|x|<r$, and

$$
\begin{aligned}
\operatorname{deg}_{x} \tilde{d}_{11} & \leq \mu+\gamma \\
\operatorname{deg}_{x} \tilde{d}_{12} & =\mu \\
\operatorname{deg}_{x} \tilde{d}_{21} & =\mu+2 \gamma
\end{aligned}
$$

Let $\tilde{D}=\left(\begin{array}{cc}\tilde{d}_{11} & \tilde{d}_{12} \\ \tilde{d}_{22} & -\tilde{d}_{11}\end{array}\right)$ be a matrix of polynomials in x such that

$$
\tilde{D}(x, \varepsilon) \sim_{1} \hat{D}(x, \varepsilon)
$$

as $\varepsilon \rightarrow 0$ in \tilde{S} and $|x|<r$, and

$$
\begin{aligned}
& \operatorname{deg}_{x} \tilde{d}_{11} \leq \mu+\gamma \\
& \operatorname{deg}_{x} \tilde{d}_{12}=\mu \\
& \operatorname{deg}_{x} \tilde{d}_{21}=\mu+2 \gamma
\end{aligned}
$$

Proposition

For all $r \in] 0, r_{0}[$, there exists $\tilde{P}(x, \varepsilon)$, holomorphic and bounded on $D(0, r) \times \tilde{S}$, admitting an asymptotic expansion of Gevrey order 1, such that $\operatorname{det} P_{0}(x) \equiv 1$ and the change of variables $y=\tilde{P}(x, \varepsilon) w$ reduces the differential system $\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y$ to

$$
\varepsilon \frac{d w}{d x}=\tilde{D}(x, \varepsilon) w
$$

The main result (even case)

Theorem

If (\mathcal{C}) is satisfied, then, $\forall r \in] 0, r_{0}[$ and for all sufficiently small open sector S with vertex in 0 , there exists a 2×2 holomorphic and bounded matrix $T(x, \varepsilon)$ on $D(0, r) \times S$ such that $T(x, \varepsilon) \sim_{1} \hat{T}(x, \varepsilon)$ as $\varepsilon \rightarrow 0$ in S and $|x|<r, \operatorname{det} T_{0}(x) \equiv 1$ and

$$
\varepsilon \frac{d y}{d x}=A(x, \varepsilon) y \underset{y=T(x, \varepsilon) z}{\sim} \varepsilon \frac{d z}{d x}=B(x, \varepsilon) z
$$

where

$$
B(x, \varepsilon)=\left(\begin{array}{cc}
0 & x^{\mu} \\
x^{\mu+2 \gamma} & 0
\end{array}\right)+\varepsilon\left(\begin{array}{cc}
b_{11}(x, \varepsilon) & b_{12}(x, \varepsilon) \\
b_{21}(x, \varepsilon) & -b_{11}(x, \varepsilon)
\end{array}\right)
$$

and the $b_{i j}$ are polynomials in x such that

$$
\operatorname{deg}_{x} b_{11}<\mu, \operatorname{deg}_{x} b_{12}<\mu \text { and } \operatorname{deg}_{x} b_{21}<\mu+2 \gamma
$$

