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Introduction

Consider the differential equation

d?
@ e~y =0,

where
@c>0,¢—0,
® x € [a,b]
e Q:[ab] = R of class C.



Introduction

Consider the differential equation

d?y
2
€ W—Q(X)YZO,
where
@c>0,¢—0,
® x € [a,b]
e @:[a, b] — R of class C.

Example
The Schrddinger equation (1925) :

%y
dx?

Here £ plays the role of € and Q(x) = 2m(V/(x) — E).

-2 (V) - By =o0.
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Liouville-Green (1837)

Approximation of solutions :

If Q(x)>0

5.2 = Q) e (£ [ V@)
If Q(x) <0

PE(x,2) = (—Q(x) p( L[ vawa).

(3)



Liouville-Green (1837)

d2
22— Qx)y =0 (1)
Approximation of solutions :
If Q(x) >0
5.2 = Q) e (£ [ V@) @
If Q(x) <0

e = (-0 Few (1 [ V0@dE). @)

If Q(x0) =0 and Q'(xp) # 0, then the functions (2) and (3) are no more
approximations of the solutions.



The zeros of Q(x) separate regions with oscillating behavior from regions
with exponential behavior.

1.57

-0.5-



Turning point

The zeros of Q(x) separate regions with oscillating behavior from regions
with exponential behavior.

Definition

The zeros of Q(x) are called turning points.




Mathematical background

Consider the differential equation

dy
Ea = A(ng))/7 (4)
where
@ x is a complex variable,
@ ¢ is a small complex parameter,

@ A(x,e) is a 2 x 2 matrix of holomorphic and bounded functions on
D(0, ry) x D(0, ).



Mathematical background

Consider the differential equation

5% = A(x,e)y, (4)
where
@ x is a complex variable,
@ ¢ is a small complex parameter,
@ A(x,e) is a 2 x 2 matrix of holomorphic and bounded functions on
D(0, ry) x D(0, ).

The case «A(0,0) admits two distinct eigenvalues» is well known.



Mathematical background

Consider the differential equation

dy
oA 4
= = Ax, )y, (*)
where
@ x is a complex variable,
@ ¢ is a small complex parameter,
@ A(x,e) is a 2 x 2 matrix of holomorphic and bounded functions on
D(0, ry) x D(0, ).
The case «A(0,0) admits two distinct eigenvalues» is well known.

Otherwise the point x = 0 is a turning point for system (4).



Mathematical background

Consider the differential system

dy
A
€ (x,€)y,
Let Ao(x) be the matrix A(x,0).
We assume that :

@ Ap(0) admits a unique eigenvalue 0,
e trA(x,e) =0,
e det Ao(x) Z0.



Mathematical background

Consider the differential system

dy
ea - A(X,€)y,

Let Ap(x) be the matrix A(x,0).

We assume that :
@ Ap(0) admits a unique eigenvalue 0,
e trA(x,e) =0,
e det Ao(x) Z0.

In this case Ag(x) admits two distinct eigenvalues when x # 0, which are
equal at x = 0.



Mathematical background

We can reduce the study to differential systems of this form

dy
Y = Ax.e)y,

where
e trA(x,e) =0,

0 x* .
e Ao(x) = I , with g, v € N and uv # 0.
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Condition (C)

We consider the differential system

where

Alx,2) = Ao(x) +5< a(x,2) blx.<) ) .

C(X7€) _a(X,€)
Condition (C):
Q v is even and ¢(x,0) = @(X%(u—z))’
Q v is odd and ¢(x,0) = O(X%(v—l))‘



Simplification theorems
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Hanson & Russell (1967)

Theorem. If (C) is satified, then there exists T(x,¢) = > o Tn(x)e™,
such that det To(x) =1 and

dy dz =«
e— = A(x, ¢ ~ — = B(x,¢)z,
Ay~ e =Bl
where . A
a b11(X,E) b12(X,€)
B(x,e) = Ag(x) +e| = ~
( ) 0( ) ( b21(X, 6) bgz(X,S)

and the Bij are polynomials in x :



Hanson & Russell (1967)

Theorem. If (C) is satified, then there exists T(x,¢) = > o Tn(x)e™,
such that det To(x) =1 and

Y _a ~ Z_B
de (x,e)y ey, S dx (x,¢€)z,
where . A
a b11(X,E) b12(X,€)
B =A A -
(X 8) O(X) te ( b21(X, 6) bgz(X,S)

and the Bij are polynomials in x :

deg, 1:711 <
deg, b1a < p,
degx [321 < pu+v,
deg, 1322 < .
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bounded functions on D(0, r) x S such that



Main result

If (C) is satisfied, then, Vr €]0, ro[ and for all sufficiently small open sector

S with vertex in 0, there exists a 2 x 2 matrix T(x,¢) of holomorphic and
bounded functions on D(0, r) x S such that

o T(x,e) ~1 T(x,€),as S3¢—0and x € D(0,r),



Main result

If (C) is satisfied, then, Vr €]0, ro[ and for all sufficiently small open sector

S with vertex in 0, there exists a 2 x 2 matrix T(x,¢) of holomorphic and
bounded functions on D(0, r) x S such that

o T(x,e) ~1 T(x,€),as S3¢—0and x € D(0,r),
e det To(x) =1,



Main result

If (C) is satisfied, then, Vr €]0, ro[ and for all sufficiently small open sector

S with vertex in 0, there exists a 2 x 2 matrix T(x,¢) of holomorphic and
bounded functions on D(0, r) x S such that

o T(x,e) ~1 T(x,€),as S3¢—0and x € D(0,r),
e det To(x) =1,
]

eﬂ =A

dz
dX - (X’ E).y ~

Tz S v B(x,¢e)z

where
Bxe) = Aol += (20T Bl )

and the bj; are polynomials in x :



Main result

If (C) is satisfied, then, Vr €]0, ro[ and for all sufficiently small open sector

S with vertex in 0, there exists a 2 x 2 matrix T(x,¢) of holomorphic and
bounded functions on D(0, r) x S such that

o T(x,e) ~1 T(x,€),as S3¢—0and x € D(0,r),
e det To(x) =1,
]

eﬂ =A

dz
dX - (X’ E).y ~

Tz S v B(x,¢e)z

where
Bxe) = Aol += (20T Bl )

and the bj; are polynomials in x :

deg, b11 < p,
deg, b1z < u,
deg, by < u+ .



Known results



Known results

Recall :



Known results

Recall :

dy 0 x+
e = A(x,e)y and Ao(x) = ( R ) .

The case n = 0 is well known :

01

@ Wasow treated the case Ag(x) = < « 0 ) in 1965,



Known results

Recall :
dy 0 x+
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@ Wasow treated the case Ag(x) = < 2 (1) ) in 1965,
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Known results

Recall :
dy 0 x+
sa =A(x,e)y and Ao(x) = ( R ) .

The case n = 0 is well known :

@ Wasow treated the case Ag(x) = < 2 (1) ) in 1965,
0 1.
@ Lee treated the case Ap(x) = < 2 0 ) in 1969,
. 0 1 L
@ Sibuya treated the case Ag(x) = w0 ) V€ N*, in 1974.



Gevrey theory of composite asymptotic
expansions






Let
o S={neC,0<n <metag<argn< o},

Bo

‘xao



Let
o S={necC, 0<|nf <noetag<argn< o},
o V(n)={xeC, pln|<|x|<retad <argx < f'},

e




Notations

Let

o S={neC, 0<|n <noetag<argn<pfo}
o V(n)={x€eC, pln|<|x| <retad <argx < p'},
o V={XeC, p<|Xleta<argX <f}.
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Notations

Let

o S={neC, 0<|n <noetag<argn<pfo}
o V(n)={x€eC, pln|<|x| <retad <argx < p'},
o V={XeC, p<|Xleta<argX <f}.

B

We call (P) the following property :

If n €S and x € V(n), then £ € V.

ISHEES



Formal composite series

Definition

A formal composite series associated to V and D(0,r) is a series of this

form
goem) = (an(x) + &%) "

n>0
where

the a,(x) are holomorphic and bounded functions on D(0, r),
the g,(X) are holomorphic and bounded functions on V such that

gn(X) ~ Z &mX M as V> X — 0.
m>0




Formal composite series

Definition

A formal composite series associated to V and D(0,r) is a series of this

form
goem) = (an(x) + &%) "

n>0
where

the a,(x) are holomorphic and bounded functions on D(0, r),
the g,(X) are holomorphic and bounded functions on V such that

gn(X) ~ Z &mX M as V> X — 0.
m>0

The series >~ an(x)n" is called the slow part of j(x,n).
The series 3~ 8n(5)n" is called the fast part of §(x, 7).



Let y(x,n) be a holomorphic and bounded function defined for n € S and

for x € V(n), and let (x,1) = 3= 150 (an(x) + ga(%)) n" be a formal
composite series.

Definition
We say that y admits § as composite asymptotic expansion (CAsE), as
n—0in S and x € V(n), if VN e N, 3Ky > 0,

N—-1

yoom) = Y (an(x) + &a(%)) 0"

n=0

< Kn|n|",

for allp € S and all x € V(7).




Gevrey CAsE

We say that y admits y as CAsE of Gevrey order %, asn—0in S and
x € V(n),if3C,L >0, VN € N,

N—-1

y(x,m) Z x) +gn(2)) 1"

n=0

< Lr(% 4+ 1",

for allm € S and all x € V(n) and

&n(X) ~1 Zg,,mx_m, asVoX—= oo
i m>0




Gevrey CAsE

We say that y admits y as CAsE of Gevrey order %, asn—0in S and
x € V(n),if3C,L >0, VN € N,

N—-1

y(x,m) Z x) +gn(2)) 1"

n=0

< Lr(% 4+ 1",

for allm € S and all x € V(n) and

&n(X) ~1 Zg,,mx_m, asVoX—= oo
i m>0

Notation: y(x,n) ~1 y(x,n),asn — 0in S and x € V(n).

P
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Consistent good covering

A consistent good covering (c.g.c.) is a collection Sy, V/, Vg(n),
£=1,....L j=1,...,J, such that
@ (5/)¢ is a good covering of D(0,n9)*,
o (V) is a good covering of {X € C, |X| > p},
e foralln e Sy,
(VZ(U))j is a good covering of {x € C, p|n| < |x| < r},




Consistent good covering

A consistent good covering (c.g.c.) is a collection Sy, V/, Vg(n),
£=1,....L j=1,...,J, such that
@ (5/)¢ is a good covering of D(0,n9)*,
o (V) is a good covering of {X € C, |X| > p},
o foralln e S,
(VJ(n)); is a consistent good covering of {x € C, p|n| < |x| < r},

e ifne S and x € Vg(n), then 7 € ZB
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and Vg(n) C \N/Z(n). Let (yé(x, 77)) y be a collection of holomorphic and
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Theorem of Fruchard-Schafke

A theorem of Ramis-Sibuya type

Let S;, VY, Vg(n), (=1,...,L,j=1,...,J, be a consistent good covering

and Vg(n) C \7;-(7)). Let (yé(x, 77)) y be a collection of holomorphic and
Js .
bounded functions defined for € Sy and x € V() such that

(2 =) em)| = 0 (777

A
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A theorem of Ramis-Sibuya type

Let S;, VY, Vg(n), (=1,...,L,j=1,...,J, be a consistent good covering

and Vg(n) C \N/Z(n). Let (yé(x, 77)) y be a collection of holomorphic and
Js .

bounded functions defined for € Sy and x € V() such that

x ”)

n

(47 ) | =0 (& *



Theorem of Fruchard-Schafke

A theorem of Ramis-Sibuya type

Let S;, VY, Vg(n), (=1,...,L,j=1,...,J, be a consistent good covering
and Vg(n) C \N/Z(n). Let (yé(x, 77)) y be a collection of holomorphic and

.I7 .
bounded functions defined for n € Sy and x € V/(n) such that

(2 =) em)| = 0 (777

yiom) ~1 S (anlx) + g4(2)) ",

P
n>0

and

X
n

(47 ) o] -0

Then

g{'l(x) N% Z gnmx_m, as VJ 3 X = oo
m>0



Proof of the main result



The case v even

Assume that v is even : v = 2.

Consider the differential system

dy
Ea - A(ng))/a (5)

where

Alx,e) = < e XOH ) +e< 2& 3 _b;ffxgg) )

In this case, the condition (C) becomes c(x,0) = O(x71).



Steps of the proof

© Fundamental system of solutions
@ Slow-fast factorization of a CAsE
© Analytic simplification



Fundamental system of solutions



Fundamental system of solutions

Proposition

Fundamental system of solutions ofsd—y A(x,e)y :

1 0 .
v = (5 5 ) Q.

where

nisarootofe,e=nP, withp=pu+~y+1,

Q@ admits a CAsE of Gevrey order %, asn—0inS and x € V(n),
N is a diagonal matrix.




0 xH
(1) 5% = A(x,e)y  where Ag(x) = ( i ) ’

\l/ y = T(X)U
(2) €9 = B(x,e)u  where By(x) = ( e 0 )
dx ’ 0 0 Xp_l ’
1 u=®(x,n)v and e = nP
_prl + e 0
() w8 = Clxnv where Clem) = (77 T L0 )



We precise now the second change of variables : v = ®v and € = nP.

The matrix ¢ is as follows :

_( 1 ¢
o-(17).



We precise now the second change of variables : v = ®v and € = nP.

The matrix ¢ is as follows :

_( 1 ¢
o-(17).

The function ¢T, resp. ¢, satisfies a Riccati equation :

w92 = 42201 1 FH(0) ().



Existence of ¢

d +
Pl =2 1 FR()

M = {holomorphic functions ¢(x,n) defined for n € S and x € Q(n),

[o0x; m)| < k}




Existence of ¢

d +
Pl =2 1 FR()

M = {holomorphic functions ¢(x,n) defined for n € S and x € Q(n),
lo(x,m)| < k}
Consider the following mapping 7 : My — My,

xP _ ¢P

o = [ P EEr e de
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Existence of ¢

dot _
Pl =2 1 FR()

M = {holomorphic functions ¢(x,n) defined for n € S and x € Q(n),
lp(x, m)| < k}

Consider the following mapping 7 : My — My,
1 3(%*%) +
o = [ et P, n) de.

Banach fixed-point theorem = existence of ¢™
= existence of (¢T))

Theorem of Fruchard-Schifke = (d>+)1l;(x,7]) ~1 (61 (x, 1)



d 0 g
(1) eg =A(x,e)y where Ag(x) = ( sy Xo ) ’
+ y=T(x)u
_yP-1 0
(2) 5% = B(x,e)u  where By(x) = ( XO -1 ) ,
N u=®(x,n)v and e = nP

_ P11
(3) 7P% = C(x,n)v where C(X,ﬁ)=< xP 0+... 0 )



Fundamental system of solutions

We deduce the form of a fundamental system of solutions of
6% = A(x,e)y :
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Fundamental system of solutions

We deduce the form of a fundamental system of solutions of
5% = A(x,e)y :

Y(Xﬂ?) = < 0 f’y > Q(X,n)e/\(’(ﬂ?)’

where
Q admits a CAsE of Gevrey order %, asn—0in S and x € V(n),



Fundamental system of solutions

We deduce the form of a fundamental system of solutions of

d
ek = A(x,e)y

0
Y(Xﬂ?) = < 0 x7 > Q(X,n)e/\(’(ﬂ?)’

where
Q admits a CAsE of Gevrey order ,asn — 0in S and x € V(n),

—1x 1 Ri(e) log x 0
— pnP
/\(X777) ( 0 %% + R2(6) IOgX .
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Slow-fast factorization

Theorem

For all r €]0, ro[, there exist L(x,e) holomorphic and bounded on

D(0,r) x § and R(x,n) holomorphic and bounded forn € S, x € V(1),
such that

Q(Xvn) - L(X75) ’ R(Xﬂ?),

L(x,g) ~1 ZA,,(X)E”, ase—0inS and |x| < r,
n>0

and
R(x,n) ~1 E Gn(%)n", asn—01inS and x € V(n),
P

n>0

Gn(X) ~1 > GumX™™, as X — o0 in V.

m>0







As @ = L- R, we have

Y(x,n) = <(1) X(L)Q(x 7)ehtee)

_ 1 0 1 0 1 0 AGxe)
= (O X,Y>L(X,€)(O X_7)<0 X,Y)R(X,n)e ,




Lemma
The matrix Y (x,n) can be written

1 0 X.&
Vo) = Pixe) (o o ) Rixn)ee?)

where
P is a slow matrix, I.e.

P(x,e) ~1 ZA,,(X)E”, as535e—0, x| <r,
n>0

R is a fast matrix, i.e.

R(x,n) L > Gp(¥)n", as S 51— 0, x € V(n),
n>0

N is a diagonal matrix.




Analytic simplification



Proposition

The change of variables y = P(x,e)w reduces the system 5% = A(x,e)y

to

dw

i D(x,e)w,

where D(x,€) ~1 D(x,¢),

. | dulx,e)  din(x,¢)
D(X,S) - ( 821()(75) —all(X,Ef) )’

and the 3,-]- are polynomials in x such that
deg, di1 < p+7,

deg, <:112 = Wy
degx doy = [y 27.




On the one hand,
D=P AP —cPlP

and
D(X7€) ~1 D(X7€)7

ase —0in Sand |x| < r.

On the other hand, W(x,7n) = ( é XOV > R(x,n)eM*M is a fundamental
dw

system of solutions of equation e %% = D(x,e)w and
D(x,e) = eW!'(x, )W (x,m) .

= a bound for the degree of each entry of D(x,¢).




i d . -y
1 12 be a matrix of polynomials in x such that
d» —di

D(X,E) ~1 lA)(x, £),

ase —0in S and |x| < r, and

deg, C:/11 <p+7,
deg, di> = 1,
degx d21 =u+ 2'7.



Let D = Elll dlz be a matrix of polynomials in x such that
d» —di

D(x,€) ~1 D(x,e),
ase —0in S and |x| < r, and

deg, C:/11 <p+7,
deg, di> = 1,
degx d21 =u+ 2")/.

Proposition

For all r €]0, ro[, there exists P(x,e), holomorphic and bounded on
D(0,r) x S, admitting an asymptotic expansion of Gevrey order 1, such
that det Po(x) =1 and the change of variables y = P(x,e)w reduces the
differential system 5 = A(x,¢e)y to




The main result (even case)

Theorem

If (C) is satistied, then, Vr €]0, o[ and for all sufficiently small open sector
S with vertex in 0, there exists a 2 x 2 holomorphic and bounded matrix
T(x,e) on D(0,r) x S such that T(x,e) ~1 T(x,e) ase — 0 in S and
|x| < r, det To(x) =1 and

59 = A(x,e)y dz

dx y:Tr(\;(,a)z 5& - B(X,&)Z

where
. 0 xH b11(X,€) b12(X,€)
B(X’S) o < Xﬂ+2'y 0 > +5< b21(X,€) —b11(X,€) ’

and the bjj are polynomials in x such that

deg, b11 < p, deg, bia < u and deg, by1 < p+ 2.
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