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Introduction

Consider the di�erential equation

ε2
d2y

dx2
− Q(x)y = 0,

where

ε > 0, ε→ 0,

x ∈ [a, b],

Q : [a, b]→ R of class C 1.

Example

The Schrödinger equation (1925) :

d2y

dx2
− 2m

~2
(V (x)− E )y = 0.

Here ~ plays the role of ε and Q(x) = 2m(V (x)− E ).
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Liouville-Green (1837)

ε2
d2y

dx2
− Q(x)y = 0 (1)

Approximation of solutions :

If Q(x) > 0,

φ±(x , ε) = Q(x)−
1

4 exp

(
±1
ε

ˆ x√
Q(ξ)dξ

)
. (2)

If Q(x) < 0,

ψ±(x , ε) = (−Q(x))−
1

4 exp

(
± i

ε

ˆ x√
−Q(ξ)dξ

)
. (3)

If Q(x0) = 0 and Q ′(x0) 6= 0, then the functions (2) and (3) are no more

approximations of the solutions.
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Turning point

The zeros of Q(x) separate regions with oscillating behavior from regions

with exponential behavior.

De�nition

The zeros of Q(x) are called turning points.



Mathematical background

Consider the di�erential equation

ε
dy

dx
= A(x , ε)y , (4)

where

x is a complex variable,

ε is a small complex parameter,

A(x , ε) is a 2× 2 matrix of holomorphic and bounded functions on

D(0, r0)× D(0, ε0).

The case �A(0, 0) admits two distinct eigenvalues� is well known.

Otherwise the point x = 0 is a turning point for system (4).
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ε
dy
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Let A0(x) be the matrix A(x , 0).

We assume that :

A0(0) admits a unique eigenvalue 0,

trA(x , ε) ≡ 0,

det A0(x) 6≡ 0.

In this case A0(x) admits two distinct eigenvalues when x 6= 0, which are

equal at x = 0.
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Mathematical background

We can reduce the study to di�erential systems of this form

ε
dy

dx
= A(x , ε)y ,

where

trA(x , ε) ≡ 0,

A0(x) =

(
0 xµ

xµ+ν 0

)
, with µ, ν ∈ N and µν 6= 0.



Condition (C)

We consider the di�erential system

ε
dy

dx
= A(x , ε)y ,

where

A(x , ε) = A0(x) + ε

(
a(x , ε) b(x , ε)
c(x , ε) −a(x , ε)

)
.

Condition (C):

1 ν is even and c(x , 0) = O(x
1

2
(ν−2)),

2 ν is odd and c(x , 0) = O(x
1

2
(ν−1)).
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Hanson & Russell (1967)



Hanson & Russell (1967)

Theorem. If (C) is sati�ed, then there exists T̂ (x , ε) =
∑

n≥0 Tn(x)εn,
such that detT0(x) ≡ 1 and

ε
dy

dx
= A(x , ε)y ∼

y=T̂ (x ,ε)z
ε
dz

dx
= B̂(x , ε)z ,

where

B̂(x , ε) = A0(x) + ε

(
b̂11(x , ε) b̂12(x , ε)

b̂21(x , ε) b̂22(x , ε)

)
and the b̂ij are polynomials in x :

degx b̂11 < µ,

degx b̂12 < µ,

degx b̂21 < µ+ ν,

degx b̂22 < µ.
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If (C) is satis�ed, then, ∀r ∈]0, r0[ and for all su�ciently small open sector

S with vertex in 0, there exists a 2× 2 matrix T (x , ε) of holomorphic and

bounded functions on D(0, r)× S such that
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Known results

Recall :

ε
dy

dx
= A(x , ε)y and A0(x) =

(
0 xµ

xµ+ν 0

)
.

The case µ = 0 is well known :

Wasow treated the case A0(x) =

(
0 1

x 0

)
in 1965,

Lee treated the case A0(x) =

(
0 1

x2 0

)
in 1969,

Sibuya treated the case A0(x) =

(
0 1

xν 0

)
, ν ∈ N?, in 1974.
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Formal composite series

De�nition

A formal composite series associated to V and D(0, r) is a series of this

form

ŷ(x , η) =
∑
n≥0

(
an(x) + gn( xη )

)
ηn,

where

the an(x) are holomorphic and bounded functions on D(0, r),
the gn(X) are holomorphic and bounded functions on V such that

gn(X) ∼
∑
m>0

gnmX
−m, as V 3 X→∞.

The series
∑

n≥0 an(x)ηn is called the slow part of ŷ(x , η).
The series

∑
n≥0 gn( xη )ηn is called the fast part of ŷ(x , η).
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CAsE

Let y(x , η) be a holomorphic and bounded function de�ned for η ∈ S and

for x ∈ V (η), and let ŷ(x , η) =
∑

n≥0
(
an(x) + gn( x

η
)
)
ηn be a formal

composite series.

De�nition

We say that y admits ŷ as composite asymptotic expansion (CAsE), as

η → 0 in S and x ∈ V (η), if ∀N ∈ N, ∃KN > 0,∣∣∣∣∣y(x , η)−
N−1∑
n=0

(
an(x) + gn( xη )

)
ηn

∣∣∣∣∣ ≤ KN |η|N ,

for all η ∈ S and all x ∈ V (η).
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p
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(S`)` is a good covering of D(0, η0)?,

(V j)j is a good covering of {X ∈ C, |X| > ρ},
for all η ∈ S`,
(V j
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` − y
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`

)
(x , η)
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Then

y
j
`(x , η) ∼ 1

p

∑
n≥0

(
an(x) + g jn( xη )

)
ηn,

g jn(X) ∼ 1

p

∑
m>0

gnmX
−m, as V j 3 X→∞.



Proof of the main result



The case ν even

Assume that ν is even : ν = 2γ.

Consider the di�erential system

ε
dy

dx
= A(x , ε)y , (5)

where

A(x , ε) =

(
0 xµ

xµ+2γ 0

)
+ ε

(
a(x , ε) b(x , ε)
c(x , ε) −a(x , ε)

)
.

In this case, the condition (C) becomes c(x , 0) = O(xγ−1).



Steps of the proof

1 Fundamental system of solutions

2 Slow-fast factorization of a CAsE

3 Analytic simpli�cation



Fundamental system of solutions



Fundamental system of solutions

Proposition

Fundamental system of solutions of εdy
dx

= A(x , ε)y :

Y (x , η) =

(
1 0

0 xγ

)
Q(x , η)eΛ(x ,η),

where

η is a root of ε, ε = ηp, with p = µ+ γ + 1,
Q admits a CAsE of Gevrey order 1

p
, as η → 0 in S and x ∈ V (η),

Λ is a diagonal matrix.



Preparation

(1) εdy
dx

= A(x , ε)y where A0(x) =

(
0 xµ

xµ+2γ 0

)
,

↓ y = T (x)u

(2) εdu
dx

= B(x , ε)u where B0(x) =

(
−xp−1 0

0 xp−1

)
,

↓ u = Φ(x , η)v and ε = ηp

(3) ηp dv
dx

= C (x , η)v where C (x , η) =

(
−xp−1 + . . . 0

0 xp−1 + . . .

)
.



Existence of Φ

We precise now the second change of variables : u = Φv and ε = ηp.

The matrix Φ is as follows :

Φ =

(
1 φ−

φ+ 1

)
.

The function φ+, resp. φ−, satis�es a Riccati equation :

ηp
dφ

dx
= ±2xp−1φ+ F±(φ)(x , η).
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p
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Summary

(1) εdy
dx

= A(x , ε)y where A0(x) =

(
0 xµ

xµ+2γ 0

)
,

↓ y = T (x)u

(2) εdu
dx

= B(x , ε)u where B0(x) =

(
−xp−1 0

0 xp−1

)
,

↓ u = Φ(x , η)v and ε = ηp

(3) ηp dv
dx

= C (x , η)v where C (x , η) =

(
−xp−1 + . . . 0

0 xp−1 + . . .

)
.



Fundamental system of solutions

We deduce the form of a fundamental system of solutions of

εdy
dx

= A(x , ε)y :

Y (x , η) =

(
1 0

0 xγ

)
Q(x , η)eΛ(x ,η),

where

Q admits a CAsE of Gevrey order 1

p
, as η → 0 in S and x ∈ V (η),

Λ(x , η) =

(
− 1

p
xp

ηp + R1(ε) log x 0
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p
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ηp + R2(ε) log x

)
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Slow-fast factorization



Slow-fast factorization

Theorem

For all r ∈]0, r0[, there exist L(x , ε) holomorphic and bounded on

D(0, r)× S̃ and R(x , η) holomorphic and bounded for η ∈ S, x ∈ V (η),
such that

Q(x , η) = L(x , ε) · R(x , η),

L(x , ε) ∼1

∑
n≥0

An(x)εn, as ε→ 0 in S̃ and |x | < r ,

and

R(x , η) ∼ 1

p

∑
n≥0

Gn( xη )ηn, as η → 0 in S and x ∈ V (η),

Gn(X) ∼ 1

p

∑
m≥0

GnmX
−m, as X→∞ in V .



The matrix Y



The matrix Y

As Q = L · R, we have

Y (x , η) =

(
1 0

0 xγ

)
Q(x , η)eΛ(x ,ε),

=

(
1 0

0 xγ

)
L(x , ε)

(
1 0

0 x−γ

)
︸ ︷︷ ︸

P(x , ε)

(
1 0

0 xγ

)
R(x , η)eΛ(x ,ε),



Lemma

The matrix Y (x , η) can be written

Y (x , η) = P(x , ε)

(
1 0

0 xγ

)
R(x , η)eΛ(x ,ε),

where

P is a slow matrix, i.e.

P(x , ε) ∼1

∑
n≥0

An(x)εn, as S̃ 3 ε→ 0, |x | < r ,

R is a fast matrix, i.e.

R(x , η) ∼ 1

p

∑
n≥0

Gn( xη )ηn, as S 3 η → 0, x ∈ V (η),

Λ is a diagonal matrix.



Analytic simpli�cation



Proposition

The change of variables y = P(x , ε)w reduces the system εdy
dx

= A(x , ε)y
to

ε
dw

dx
= D(x , ε)w ,

where D(x , ε) ∼1 D̂(x , ε),

D̂(x , ε) =

(
d̂11(x , ε) d̂12(x , ε)

d̂21(x , ε) −d̂11(x , ε)

)
,

and the d̂ij are polynomials in x such that

degx d̂11 ≤ µ+ γ,

degx d̂12 = µ,

degx d̂21 = µ+ 2γ.



Proof.

On the one hand,

D = P−1AP − εP−1P ′

and

D(x , ε) ∼1 D̂(x , ε),

as ε→ 0 in S̃ and |x | < r .

On the other hand, W (x , η) =

(
1 0

0 xγ

)
R(x , η)eΛ(x ,η) is a fundamental

system of solutions of equation εdw
dx

= D(x , ε)w and

D(x , ε) = εW ′(x , η)W (x , η)−1.

⇒ a bound for the degree of each entry of D̂(x , ε).



Let D̃ =

(
d̃11 d̃12
d̃22 −d̃11

)
be a matrix of polynomials in x such that

D̃(x , ε) ∼1 D̂(x , ε),

as ε→ 0 in S̃ and |x | < r , and

degx d̃11 ≤ µ+ γ,

degx d̃12 = µ,

degx d̃21 = µ+ 2γ.

Proposition

For all r ∈]0, r0[, there exists P̃(x , ε), holomorphic and bounded on

D(0, r)× S̃ , admitting an asymptotic expansion of Gevrey order 1, such

that detP0(x) ≡ 1 and the change of variables y = P̃(x , ε)w reduces the

di�erential system εdy
dx

= A(x , ε)y to

ε
dw

dx
= D̃(x , ε)w .
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)
be a matrix of polynomials in x such that
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as ε→ 0 in S̃ and |x | < r , and

degx d̃11 ≤ µ+ γ,

degx d̃12 = µ,

degx d̃21 = µ+ 2γ.

Proposition

For all r ∈]0, r0[, there exists P̃(x , ε), holomorphic and bounded on

D(0, r)× S̃ , admitting an asymptotic expansion of Gevrey order 1, such

that detP0(x) ≡ 1 and the change of variables y = P̃(x , ε)w reduces the

di�erential system εdy
dx

= A(x , ε)y to

ε
dw

dx
= D̃(x , ε)w .



The main result (even case)

Theorem

If (C) is satis�ed, then, ∀r ∈]0, r0[ and for all su�ciently small open sector

S with vertex in 0, there exists a 2× 2 holomorphic and bounded matrix

T (x , ε) on D(0, r)× S such that T (x , ε) ∼1 T̂ (x , ε) as ε→ 0 in S and

|x | < r , detT0(x) ≡ 1 and

ε
dy

dx
= A(x , ε)y ∼

y=T (x ,ε)z
ε
dz

dx
= B(x , ε)z

where

B(x , ε) =

(
0 xµ

xµ+2γ 0

)
+ ε

(
b11(x , ε) b12(x , ε)
b21(x , ε) −b11(x , ε)

)
,

and the bij are polynomials in x such that

degx b11 < µ, degx b12 < µ and degx b21 < µ+ 2γ.
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