Uniform simplification in the full neighborhood of a turning point

Charlotte Hulek

September 5, 2014

Plan of the talk

Introduction and results

Q Gevrey theory of composite asymptotic expansions

3 Proof of the main result

Introduction

Consider the differential equation

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0,$$

where

- $\varepsilon > 0$, $\varepsilon \to 0$,
- $x \in [a, b]$,
- $ullet Q:[a,b] o \mathbb{R} ext{ of class } C^1.$

Introduction

Consider the differential equation

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0,$$

where

- $\varepsilon > 0$, $\varepsilon \to 0$,
- $x \in [a, b]$,
- $Q:[a,b] \to \mathbb{R}$ of class C^1 .

Example

The Schrödinger equation (1925):

$$\frac{d^2y}{dx^2} - \frac{2m}{\hbar^2}(V(x) - E)y = 0.$$

Here \hbar plays the role of ε and Q(x) = 2m(V(x) - E).

Liouville-Green (1837)

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0 \tag{1}$$

Approximation of solutions:

$$\text{If } Q(x) > 0,$$

$$\phi^{\pm}(x,\varepsilon) = Q(x)^{-\frac{1}{4}} \exp\left(\pm \frac{1}{\varepsilon} \int_{-\infty}^{x} \sqrt{Q(\xi)} d\xi\right). \tag{2}$$

Liouville-Green (1837)

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0 \tag{1}$$

Approximation of solutions : If Q(x) > 0,

$$\phi^{\pm}(x,\varepsilon) = Q(x)^{-\frac{1}{4}} \exp\left(\pm \frac{1}{\varepsilon} \int^{x} \sqrt{Q(\xi)} d\xi\right). \tag{2}$$

If Q(x) < 0,

$$\psi^{\pm}(x,\varepsilon) = (-Q(x))^{-\frac{1}{4}} \exp\left(\pm \frac{i}{\varepsilon} \int^{x} \sqrt{-Q(\xi)} d\xi\right). \tag{3}$$

Liouville-Green (1837)

$$\varepsilon^2 \frac{d^2 y}{dx^2} - Q(x)y = 0 \tag{1}$$

Approximation of solutions : If Q(x) > 0,

$$\phi^{\pm}(x,\varepsilon) = Q(x)^{-\frac{1}{4}} \exp\left(\pm \frac{1}{\varepsilon} \int_{-\varepsilon}^{x} \sqrt{Q(\xi)} d\xi\right). \tag{2}$$

If Q(x) < 0,

$$\psi^{\pm}(x,\varepsilon) = (-Q(x))^{-\frac{1}{4}} \exp\left(\pm \frac{i}{\varepsilon} \int_{-\infty}^{\infty} \sqrt{-Q(\xi)} d\xi\right). \tag{3}$$

If $Q(x_0)=0$ and $Q'(x_0)\neq 0$, then the functions (2) and (3) are no more approximations of the solutions.

Turning point

The zeros of Q(x) separate regions with oscillating behavior from regions with exponential behavior.

Turning point

The zeros of Q(x) separate regions with oscillating behavior from regions with exponential behavior.

Definition

The zeros of Q(x) are called turning points.

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y, \tag{4}$$

where

- x is a complex variable,
- ullet is a small complex parameter,
- $A(x,\varepsilon)$ is a 2 × 2 matrix of holomorphic and bounded functions on $D(0,r_0)\times D(0,\varepsilon_0)$.

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y, \tag{4}$$

where

- x is a complex variable,
- \bullet ε is a small complex parameter,
- $A(x,\varepsilon)$ is a 2 × 2 matrix of holomorphic and bounded functions on $D(0,r_0)\times D(0,\varepsilon_0)$.

The case $\ll A(0,0)$ admits two distinct eigenvalues» is well known.

Consider the differential equation

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y, \tag{4}$$

where

- x is a complex variable,
- \bullet ε is a small complex parameter,
- $A(x,\varepsilon)$ is a 2 × 2 matrix of holomorphic and bounded functions on $D(0,r_0)\times D(0,\varepsilon_0)$.

The case $\ll A(0,0)$ admits two distinct eigenvalues» is well known.

Otherwise the point x = 0 is a turning point for system (4).

Consider the differential system

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

Let $A_0(x)$ be the matrix A(x,0).

We assume that :

- $A_0(0)$ admits a unique eigenvalue 0,
- $\operatorname{tr} A(x,\varepsilon) \equiv 0$,
- det $A_0(x) \not\equiv 0$.

Consider the differential system

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

Let $A_0(x)$ be the matrix A(x,0).

We assume that :

- $A_0(0)$ admits a unique eigenvalue 0,
- $\operatorname{tr} A(x,\varepsilon) \equiv 0$,
- det $A_0(x) \not\equiv 0$.

In this case $A_0(x)$ admits two distinct eigenvalues when $x \neq 0$, which are equal at x = 0.

We can reduce the study to differential systems of this form

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

where

•
$$\operatorname{tr} A(x,\varepsilon) \equiv 0$$
,

$$\bullet \ A_0(x) = \left(\begin{array}{cc} 0 & x^{\mu} \\ x^{\mu+\nu} & 0 \end{array} \right), \ \text{with} \ \mu,\nu \in \mathbb{N} \ \text{and} \ \mu\nu \neq 0.$$

Condition (C)

We consider the differential system

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

where

$$A(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

Condition (C)

We consider the differential system

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y,$$

where

$$A(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

Condition (C):

- **1** ν is even and $\mathbf{c}(x,0) = \mathcal{O}(x^{\frac{1}{2}(\nu-2)}),$
- ② ν is odd and $\mathbf{c}(x,0) = \mathcal{O}(x^{\frac{1}{2}(\nu-1)})$.

Simplification theorems

Hanson & Russell (1967)

Hanson & Russell (1967)

Theorem. If (C) is satisfied, then there exists $\hat{T}(x,\varepsilon)=\sum_{n\geq 0}T_n(x)\varepsilon^n$, such that $\det T_0(x)\equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \underset{y=\hat{T}(x,\varepsilon)z}{\sim} \varepsilon \frac{dz}{dx} = \hat{B}(x,\varepsilon)z,$$

where

$$\hat{B}(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} \hat{b}_{11}(x,\varepsilon) & \hat{b}_{12}(x,\varepsilon) \\ \hat{b}_{21}(x,\varepsilon) & \hat{b}_{22}(x,\varepsilon) \end{pmatrix}$$

and the \hat{b}_{ij} are polynomials in x :

Hanson & Russell (1967)

Theorem. If (C) is satisfied, then there exists $\hat{T}(x,\varepsilon)=\sum_{n\geq 0}T_n(x)\varepsilon^n$, such that $\det T_0(x)\equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \underset{y=\hat{T}(x,\varepsilon)z}{\sim} \varepsilon \frac{dz}{dx} = \hat{B}(x,\varepsilon)z,$$

where

$$\hat{B}(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} \hat{b}_{11}(x,\varepsilon) & \hat{b}_{12}(x,\varepsilon) \\ \hat{b}_{21}(x,\varepsilon) & \hat{b}_{22}(x,\varepsilon) \end{pmatrix}$$

and the \hat{b}_{ij} are polynomials in x :

$$\begin{split} \deg_{\mathbf{x}} \hat{b}_{11} &< \mu, \\ \deg_{\mathbf{x}} \hat{b}_{12} &< \mu, \\ \deg_{\mathbf{x}} \hat{b}_{21} &< \mu + \nu, \\ \deg_{\mathbf{x}} \hat{b}_{22} &< \mu. \end{split}$$

If (C) is satisfied, then, $\forall r \in]0, r_0[$ and for all sufficiently small open sector S with vertex in 0, there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

If (C) is satisfied, then, $\forall r \in]0, r_0[$ and for all sufficiently small open sector S with vertex in 0, there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

• $T(x,\varepsilon)\sim_1 \hat{T}(x,\varepsilon)$, as $S\ni \varepsilon \to 0$ and $x\in D(0,r)$,

If (C) is satisfied, then, $\forall r \in]0, r_0[$ and for all sufficiently small open sector S with vertex in 0, there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

- $T(x,\varepsilon)\sim_1 \hat{T}(x,\varepsilon)$, as $S\ni \varepsilon \to 0$ and $x\in D(0,r)$,
- det $T_0(x) \equiv 1$,

If (C) is satisfied, then, $\forall r \in]0, r_0[$ and for all sufficiently small open sector S with vertex in 0, there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

- $T(x,\varepsilon)\sim_1 \hat{T}(x,\varepsilon)$, as $S\ni \varepsilon \to 0$ and $x\in D(0,r)$,
- det $T_0(x) \equiv 1$,

•

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y \sim_{y = T(x, \varepsilon)z} \varepsilon \frac{dz}{dx} = B(x, \varepsilon)z$$

where

$$B(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} b_{11}(x,\varepsilon) & b_{12}(x,\varepsilon) \\ b_{21}(x,\varepsilon) & -b_{11}(x,\varepsilon) \end{pmatrix}$$

and the b_{ij} are polynomials in x:

If (C) is satisfied, then, $\forall r \in]0, r_0[$ and for all sufficiently small open sector S with vertex in 0, there exists a 2×2 matrix $T(x, \varepsilon)$ of holomorphic and bounded functions on $D(0, r) \times S$ such that

- $T(x,\varepsilon)\sim_1 \hat{T}(x,\varepsilon)$, as $S\ni\varepsilon\to 0$ and $x\in D(0,r)$,
- det $T_0(x) \equiv 1$,

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y \underset{y = T(x, \varepsilon)z}{\sim} \varepsilon \frac{dz}{dx} = B(x, \varepsilon)z$$

where

$$B(x,\varepsilon) = A_0(x) + \varepsilon \begin{pmatrix} b_{11}(x,\varepsilon) & b_{12}(x,\varepsilon) \\ b_{21}(x,\varepsilon) & -b_{11}(x,\varepsilon) \end{pmatrix}$$

and the b_{ij} are polynomials in x:

$$\deg_x b_{11} < \mu,$$

 $\deg_x b_{12} < \mu,$
 $\deg_x b_{21} < \mu + \nu.$

Recall:

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \text{ and } \quad A_0(x) = \left(\begin{array}{cc} 0 & x^\mu \\ x^{\mu+\nu} & 0 \end{array} \right).$$

Recall:

$$arepsilon rac{dy}{dx} = A(x,arepsilon)y \quad ext{ and } \quad A_0(x) = \left(egin{array}{cc} 0 & x^\mu \ x^{\mu+
u} & 0 \end{array}
ight).$$

The case $\mu=0$ is well known :

• Wasow treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x & 0 \end{pmatrix}$ in 1965,

Recall:

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \text{ and } \quad A_0(x) = \left(\begin{array}{cc} 0 & x^\mu \\ x^{\mu+\nu} & 0 \end{array} \right).$$

The case $\mu=0$ is well known :

- Wasow treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x & 0 \end{pmatrix}$ in 1965,
 - Lee treated the case $A_0(x)=\left(egin{array}{cc} 0 & 1 \\ x^2 & 0 \end{array} \right)$ in 1969,

Recall:

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \quad \text{ and } \quad A_0(x) = \left(\begin{array}{cc} 0 & x^\mu \\ x^{\mu+\nu} & 0 \end{array} \right).$$

The case $\mu=0$ is well known :

- Wasow treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x & 0 \end{pmatrix}$ in 1965,
- Lee treated the case $A_0(x) = \begin{pmatrix} 0 & 1 \\ x^2 & 0 \end{pmatrix}$ in 1969,
- Sibuya treated the case $A_0(x)=\left(\begin{array}{cc} 0 & 1 \\ x^{\nu} & 0 \end{array}\right)$, $\nu\in\mathbb{N}^{\star},$ in 1974.

Gevrey theory of composite asymptotic

expansions

Notations

Notations

Let

$$\bullet \ \ \mathcal{S}=\{\eta\in\mathbb{C},\ 0<|\eta|<\eta_0 \ \text{et} \ \alpha_0<\arg\eta<\beta_0\},$$

Notations

Let

- $\bullet \ \ S=\{\eta\in\mathbb{C},\ 0<|\eta|<\eta_0\ \ \text{et}\ \alpha_0<\arg\eta<\beta_0\},$
- $\bullet \ V(\eta) = \left\{ x \in \mathbb{C}, \ \rho |\eta| < |x| < r \ \mathrm{et} \ \alpha' < \arg x < \beta' \right\},$

Notations

Let

- $S = \{ \eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \ \mathrm{et} \ \alpha_0 < \arg \eta < \beta_0 \},$
- $V(\eta) = \{x \in \mathbb{C}, \ \rho |\eta| < |x| < r \text{ et } \alpha' < \arg x < \beta' \},$
- $\bullet \ \ V = \left\{ \mathbf{X} \in \mathbb{C}, \ \rho < |\mathbf{X}| \ \mathrm{et} \ \alpha < \arg \mathbf{X} < \beta \right\}.$

Notations

Let

•
$$S = \{ \eta \in \mathbb{C}, \ 0 < |\eta| < \eta_0 \ \text{et} \ \alpha_0 < \arg \eta < \beta_0 \},$$

•
$$V(\eta) = \{x \in \mathbb{C}, \ \rho |\eta| < |x| < r \text{ et } \alpha' < \arg x < \beta'\},$$

$$\bullet \ \ V = \left\{ \mathbf{X} \in \mathbb{C}, \ \rho < |\mathbf{X}| \ \mathrm{et} \ \alpha < \arg \mathbf{X} < \beta \right\}.$$

We call (\mathcal{P}) the following property :

If
$$\eta \in S$$
 and $x \in V(\eta)$, then $\frac{x}{\eta} \in V$.

Formal composite series

Definition

A formal composite series associated to V and D(0,r) is a series of this form

$$\hat{y}(x,\eta) = \sum_{n>0} \left(a_n(x) + g_n(\frac{x}{\eta})\right) \eta^n,$$

where the $a_n(x)$ are holomorphic and bounded functions on D(0,r), the $g_n(\mathbf{X})$ are holomorphic and bounded functions on V such that

$$g_n(\mathbf{X}) \sim \sum g_{nm} \mathbf{X}^{-m}$$
, as $V \ni \mathbf{X} \to \infty$.

Formal composite series

Definition

A formal composite series associated to V and D(0,r) is a series of this form

$$\hat{y}(x,\eta) = \sum_{n>0} \left(a_n(x) + g_n(\frac{x}{\eta})\right) \eta^n,$$

where

the $a_n(x)$ are holomorphic and bounded functions on D(0,r), the $g_n(\mathbf{X})$ are holomorphic and bounded functions on V such that

$$g_n(\mathbf{X}) \sim \sum_{m>0} g_{nm} \mathbf{X}^{-m}$$
, as $V \ni \mathbf{X} \to \infty$.

The series $\sum_{n\geq 0} a_n(x)\eta^n$ is called the *slow part* of $\hat{y}(x,\eta)$. The series $\sum_{n\geq 0} g_n(\frac{x}{n})\eta^n$ is called the *fast part* of $\hat{y}(x,\eta)$.

CAsE

Let $y(x,\eta)$ be a holomorphic and bounded function defined for $\eta \in S$ and for $x \in V(\eta)$, and let $\hat{y}(x,\eta) = \sum_{n \geq 0} \left(a_n(x) + g_n(\frac{x}{\eta})\right) \eta^n$ be a formal composite series.

Definition

We say that y admits \hat{y} as composite asymptotic expansion (CAsE), as $\eta \to 0$ in S and $x \in V(\eta)$, if $\forall N \in \mathbb{N}, \exists K_N > 0$,

$$\left|y(x,\eta)-\sum_{n=0}^{N-1}\left(a_n(x)+g_n(\frac{x}{\eta})\right)\eta^n\right|\leq K_N|\eta|^N,$$

for all $\eta \in S$ and all $x \in V(\eta)$.

Gevrey CAsE

Definition

We say that y admits \hat{y} as CAsE of Gevrey order $\frac{1}{p}$, as $\eta \to 0$ in S and $x \in V(\eta)$, if $\exists C, L > 0$, $\forall N \in \mathbb{N}$,

$$\left|y(x,\eta)-\sum_{n=0}^{N-1}\left(a_n(x)+g_n(\frac{x}{\eta})\right)\eta^n\right|\leq CL^N\Gamma(\frac{N}{p}+1)|\eta|^N,$$

for all $\eta \in S$ and all $x \in V(\eta)$ and

$$g_n(\mathbf{X}) \sim_{\frac{1}{p}} \sum_{m>0} g_{nm} \mathbf{X}^{-m}, \text{ as } V \ni \mathbf{X} \to \infty$$

Gevrey CAsE

Definition

We say that y admits \hat{y} as CAsE of Gevrey order $\frac{1}{p}$, as $\eta \to 0$ in S and $x \in V(\eta)$, if $\exists C, L > 0$, $\forall N \in \mathbb{N}$,

$$\left|y(x,\eta)-\sum_{n=0}^{N-1}\left(a_n(x)+g_n(\frac{x}{\eta})\right)\eta^n\right|\leq CL^N\Gamma(\frac{N}{p}+1)|\eta|^N,$$

for all $\eta \in S$ and all $x \in V(\eta)$ and

$$g_n(\mathbf{X}) \sim_{\frac{1}{p}} \sum_{m>0} g_{nm} \mathbf{X}^{-m}, \text{ as } V \ni \mathbf{X} \to \infty$$

Notation: $y(x,\eta) \sim_{\frac{1}{2}} \hat{y}(x,\eta)$, as $\eta \to 0$ in S and $x \in V(\eta)$.

A consistent good covering (c.g.c.) is a collection $S_{\ell}, V^{j}, V^{j}_{\ell}(\eta), \ell = 1, \ldots, L, j = 1, \ldots, J$, such that

A consistent good covering (c.g.c.) is a collection S_ℓ , V^j , $V^j_\ell(\eta)$, $\ell=1,\ldots,L, j=1,\ldots,J$, such that

• $(S_\ell)_\ell$ is a good covering of $D(0,\eta_0)^*$,

A consistent good covering (c.g.c.) is a collection S_ℓ , V^j , $V^j_\ell(\eta)$, $\ell=1,\ldots,L, j=1,\ldots,J$, such that

- $(S_{\ell})_{\ell}$ is a good covering of $D(0, \eta_0)^*$,
- $(V^j)_j$ is a good covering of $\{\mathbf{X} \in \mathbb{C}, \ |\mathbf{X}| > \rho\}$,

A consistent good covering (c.g.c.) is a collection S_ℓ , V^j , $V^j_\ell(\eta)$, $\ell=1,\ldots,L, j=1,\ldots,J$, such that

- $(S_{\ell})_{\ell}$ is a good covering of $D(0, \eta_0)^{\star}$,
- $(V^j)_j$ is a good covering of $\{\mathbf{X} \in \mathbb{C}, \ |\mathbf{X}| > \rho\}$,
- for all $\eta \in S_{\ell}$, $(V_{\ell}^{j}(\eta))_{j}$ is a good covering of $\{x \in \mathbb{C}, \ \rho |\eta| < |x| < r\}$,

A consistent good covering (c.g.c.) is a collection S_ℓ , V^j , $V^j_\ell(\eta)$, $\ell=1,\ldots,L, j=1,\ldots,J$, such that

- $(S_{\ell})_{\ell}$ is a good covering of $D(0, \eta_0)^*$,
- ullet $(V^j)_j$ is a good covering of $\{\mathbf{X}\in\mathbb{C},\ |\mathbf{X}|>
 ho\}$,
- for all $\eta \in S_\ell$, $(V^j_\ell(\eta))_j$ is a consistent good covering of $\{x \in \mathbb{C}, \ \rho |\eta| < |x| < r\}$,
- if $\eta \in S_\ell$ and $x \in V^j_\ell(\eta)$, then $\frac{x}{\eta} \in V^j$.

A theorem of Ramis-Sibuya type

A theorem of Ramis-Sibuya type

Let $S_\ell, V^j, V^j_\ell(\eta), \ \ell=1,\ldots,L, \ j=1,\ldots,J,$ be a consistent good covering and $V^j_\ell(\eta) \subset \tilde{V}^j_\ell(\eta)$. Let $\left(y^j_\ell(x,\eta)\right)_{j,\ell}$ be a collection of holomorphic and bounded functions defined for $\eta \in S_\ell$ and $x \in \tilde{V}^j_\ell(\eta)$ such that

A theorem of Ramis-Sibuya type

Let $S_\ell, V^j, V^j_\ell(\eta), \ \ell=1,\dots,L, \ j=1,\dots,J,$ be a consistent good covering and $V^j_\ell(\eta)\subset \tilde{V}^j_\ell(\eta).$ Let $\left(y^j_\ell(x,\eta)\right)_{j,\ell}$ be a collection of holomorphic and bounded functions defined for $\eta\in S_\ell$ and $x\in \tilde{V}^j_\ell(\eta)$ such that

$$\left| \left(y_{\ell+1}^j - y_{\ell}^j \right) (x, \eta) \right| = \mathcal{O} \left(e^{-\frac{A}{|\eta|^p}} \right)$$

A theorem of Ramis-Sibuya type

Let $S_\ell, V^j, V^j_\ell(\eta), \ \ell=1,\dots,L, \ j=1,\dots,J,$ be a consistent good covering and $V^j_\ell(\eta) \subset \tilde{V}^j_\ell(\eta)$. Let $\left(y^j_\ell(x,\eta)\right)_{j,\ell}$ be a collection of holomorphic and bounded functions defined for $\eta \in S_\ell$ and $x \in \tilde{V}^j_\ell(\eta)$ such that

$$\left|\left(y_{\ell}^{j+1}-y_{\ell}^{j}\right)(x,\eta)\right|=\mathcal{O}\left(\mathrm{e}^{-B\left|\frac{x}{\eta}\right|^{p}}\right)$$

A theorem of Ramis-Sibuya type

Let $S_\ell, V^j, V^j_\ell(\eta), \ell = 1, \ldots, L, j = 1, \ldots, J$, be a consistent good covering and $V^j_\ell(\eta) \subset \tilde{V}^j_\ell(\eta)$. Let $\left(y^j_\ell(x,\eta)\right)_{j,\ell}$ be a collection of holomorphic and bounded functions defined for $\eta \in S_\ell$ and $x \in \tilde{V}^j_\ell(\eta)$ such that

$$\left|\left(y_{\ell+1}^{j}-y_{\ell}^{j}\right)(x,\eta)\right|=\mathcal{O}\left(\mathrm{e}^{-\frac{A}{|\eta|^{p}}}\right)$$

and

$$\left|\left(y_{\ell}^{j+1}-y_{\ell}^{j}\right)(x,\eta)\right|=\mathcal{O}\left(e^{-B\left|\frac{x}{\eta}\right|^{p}}\right).$$

Then

$$y_{\ell}^{j}(x,\eta) \sim_{\frac{1}{p}} \sum_{n>0} \left(a_{n}(x) + g_{n}^{j}(\frac{x}{\eta})\right) \eta^{n},$$

$$g_n^j(\mathbf{X}) \sim_{rac{1}{p}} \sum g_{nm} \mathbf{X}^{-m}, ext{ as } V^j
i \mathbf{X}
ightarrow \infty.$$

Proof of the main result

The case ν even

Assume that ν is even : $\nu = 2\gamma$.

Consider the differential system

$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y, \tag{5}$$

where

$$A(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} \mathbf{a}(x,\varepsilon) & \mathbf{b}(x,\varepsilon) \\ \mathbf{c}(x,\varepsilon) & -\mathbf{a}(x,\varepsilon) \end{pmatrix}.$$

In this case, the condition (C) becomes $c(x,0) = O(x^{\gamma-1})$.

Steps of the proof

- Fundamental system of solutions
- Slow-fast factorization of a CAsE
- Analytic simplification

Proposition

Fundamental system of solutions of $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$:

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta)e^{\Lambda(x,\eta)},$$

where

 η is a root of ε , $\varepsilon=\eta^p$, with $p=\mu+\gamma+1$, Q admits a CAsE of Gevrey order $\frac{1}{p}$, as $\eta\to 0$ in S and $x\in V(\eta)$, Λ is a diagonal matrix.

Preparation

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 where $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix}$,
 $\downarrow \qquad \qquad y = T(x)u$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u$ where $B_0(x) = \begin{pmatrix} -x^{p-1} & 0 \\ 0 & x^{p-1} \end{pmatrix}$,
 $\downarrow \qquad \qquad u = \Phi(x, \eta)v \text{ and } \varepsilon = \eta^p$
(3) $\eta^p \frac{dv}{dx} = C(x, \eta)v$ where $C(x, \eta) = \begin{pmatrix} -x^{p-1} + \dots & 0 \\ 0 & x^{p-1} + \dots \end{pmatrix}$.

Existence of Φ

We precise now the second change of variables : $u = \Phi v$ and $\varepsilon = \eta^p$.

The matrix Φ is as follows:

$$\Phi = \left(egin{array}{cc} 1 & \phi^- \ \phi^+ & 1 \end{array}
ight).$$

Existence of Φ

We precise now the second change of variables : $u = \Phi v$ and $\varepsilon = \eta^p$.

The matrix Φ is as follows:

$$\Phi = \left(egin{array}{cc} 1 & \phi^- \ \phi^+ & 1 \end{array}
ight).$$

The function ϕ^+ , resp. ϕ^- , satisfies a Riccati equation :

$$\eta^{p} \frac{d\phi}{dx} = \pm 2x^{p-1}\phi + F^{\pm}(\phi)(x,\eta).$$

$$\eta^{p} \frac{d\phi^{+}}{dx} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

 $\mathcal{M}_k = \{\text{holomorphic functions } \phi(x, \eta) \text{ defined for } \eta \in S \text{ and } x \in \Omega(\eta), |\phi(x, \eta)| \leq k \}$

$$\eta^{p} \frac{d\phi}{dx}^{+} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

 $\mathcal{M}_k = \{\text{holomorphic functions } \phi(x, \eta) \text{ defined for } \eta \in S \text{ and } x \in \Omega(\eta), |\phi(x, \eta)| \leq k \}$

Consider the following mapping $T: \mathcal{M}_k \to \mathcal{M}_k$,

$$\phi \mapsto \frac{1}{\eta^p} \int_{\gamma_x} e^{\frac{2}{p} \left(\frac{x^p}{\eta^p} - \frac{\xi^p}{\eta^p}\right)} F^+(\phi(\xi, \eta)) d\xi.$$

$$\eta^{p} \frac{d\phi}{dx}^{+} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

 $\mathcal{M}_k = \{\text{holomorphic functions } \phi(x, \eta) \text{ defined for } \eta \in S \text{ and } x \in \Omega(\eta), |\phi(x, \eta)| \leq k \}$

Consider the following mapping $\mathcal{T}: \mathcal{M}_k \to \mathcal{M}_k$,

$$\phi \mapsto \frac{1}{\eta^p} \int_{\gamma_x} e^{\frac{2}{p} \left(\frac{x^p}{\eta^p} - \frac{\xi^p}{\eta^p}\right)} F^+(\phi(\xi, \eta)) d\xi.$$

Banach fixed-point theorem \Rightarrow existence of ϕ^+ \Rightarrow existence of $(\phi^+)^j_\ell$

$$\eta^{p} \frac{d\phi}{dx}^{+} = 2x^{p-1}\phi^{+} + F^{+}(\phi^{+})$$

 $\mathcal{M}_k = \{\text{holomorphic functions } \phi(x, \eta) \text{ defined for } \eta \in S \text{ and } x \in \Omega(\eta), |\phi(x, \eta)| \leq k \}$

Consider the following mapping $T: \mathcal{M}_k \to \mathcal{M}_k$,

$$\phi \mapsto \frac{1}{\eta^p} \int_{\gamma_x} e^{\frac{2}{p} \left(\frac{x^p}{\eta^p} - \frac{\xi^p}{\eta^p}\right)} F^+(\phi(\xi, \eta)) d\xi.$$

Banach fixed-point theorem \Rightarrow existence of ϕ^+ \Rightarrow existence of $(\phi^+)^j_\ell$

Theorem of Fruchard-Schäfke \Rightarrow $(\phi^+)^j_\ell(x,\eta) \sim_{\frac{1}{p}} (\hat{\phi}^+)^j(x,\eta)$

Summary

(1)
$$\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$$
 where $A_0(x) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix}$,
 $\downarrow \qquad \qquad y = T(x)u$
(2) $\varepsilon \frac{du}{dx} = B(x, \varepsilon)u$ where $B_0(x) = \begin{pmatrix} -x^{p-1} & 0 \\ 0 & x^{p-1} \end{pmatrix}$,
 $\downarrow \qquad \qquad u = \Phi(x, \eta)v$ and $\varepsilon = \eta^p$
(3) $\eta^p \frac{dv}{dx} = C(x, \eta)v$ where $C(x, \eta) = \begin{pmatrix} -x^{p-1} + \dots & 0 \\ 0 & x^{p-1} + \dots \end{pmatrix}$.

We deduce the form of a fundamental system of solutions of $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$:

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)},$$

We deduce the form of a fundamental system of solutions of $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$:

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)},$$

where

Q admits a CAsE of Gevrey order $\frac{1}{p}$, as $\eta \to 0$ in S and $x \in V(\eta)$,

We deduce the form of a fundamental system of solutions of $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$:

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\eta)},$$

where

Q admits a CAsE of Gevrey order $\frac{1}{p}$, as $\eta \to 0$ in S and $x \in V(\eta)$,

$$\Lambda(x,\eta) = \begin{pmatrix} -\frac{1}{\rho} \frac{x^{p}}{\eta^{p}} + R_{1}(\varepsilon) \log x & 0 \\ 0 & \frac{1}{\rho} \frac{x^{p}}{\eta^{p}} + R_{2}(\varepsilon) \log x \end{pmatrix}.$$

Slow-fast factorization

Slow-fast factorization

Theorem

For all $r \in]0, r_0[$, there exist $L(x, \varepsilon)$ holomorphic and bounded on $D(0, r) \times \tilde{S}$ and $R(x, \eta)$ holomorphic and bounded for $\eta \in S$, $x \in V(\eta)$, such that

$$Q(x,\eta) = L(x,\varepsilon) \cdot R(x,\eta),$$

$$L(x, \varepsilon) \sim_1 \sum_{n \geq 0} A_n(x) \varepsilon^n$$
, as $\varepsilon \to 0$ in \tilde{S} and $|x| < r$,

and

$$R(x,\eta)\sim_{\frac{1}{p}}\sum_{n\geq 0}G_n(\frac{x}{\eta})\eta^n, \ \ ext{as } \eta o 0 \ \ ext{in } S \ \ ext{and } x\in V(\eta),$$

$$G_n(\mathbf{X}) \sim_{\frac{1}{p}} \sum_{\mathbf{X} \in \mathcal{S}} G_{nm} \mathbf{X}^{-m}, \ \ \text{as} \ \mathbf{X} \to \infty \ \ \text{in} \ \ V.$$

The matrix Y

The matrix Y

As $Q = L \cdot R$, we have

$$Y(x,\eta) = \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} Q(x,\eta) e^{\Lambda(x,\varepsilon)},$$

$$= \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} L(x,\varepsilon) \begin{pmatrix} 1 & 0 \\ 0 & x^{-\gamma} \end{pmatrix}}_{P(x,\varepsilon)} \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\varepsilon)},$$

Lemma

The matrix $Y(x, \eta)$ can be written

$$Y(x,\eta) = P(x,\varepsilon) \begin{pmatrix} 1 & 0 \\ 0 & x^{\gamma} \end{pmatrix} R(x,\eta) e^{\Lambda(x,\varepsilon)},$$

where

P is a slow matrix, i.e.

$$P(x,arepsilon) \sim_1 \sum A_n(x) arepsilon^n, \ ext{as $ ilde{S}$}
i arepsilon o 0, \ |x| < r,$$

R is a fast matrix, i.e.

$$R(x,\eta) \sim_{\frac{1}{p}} \sum_{n>0} G_n(\frac{x}{\eta}) \eta^n$$
, as $S \ni \eta \to 0$, $x \in V(\eta)$,

 Λ is a diagonal matrix.

Analytic simplification

Proposition

The change of variables $y = P(x, \varepsilon)w$ reduces the system $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ to

$$\varepsilon \frac{dw}{dx} = D(x, \varepsilon)w,$$

where $D(x,\varepsilon) \sim_1 \hat{D}(x,\varepsilon)$,

$$\hat{D}(x,\varepsilon) = \begin{pmatrix} \hat{d}_{11}(x,\varepsilon) & \hat{d}_{12}(x,\varepsilon) \\ \hat{d}_{21}(x,\varepsilon) & -\hat{d}_{11}(x,\varepsilon) \end{pmatrix},$$

and the \hat{d}_{ij} are polynomials in x such that

$$egin{aligned} \mathsf{deg}_x \, \hat{d}_{11} & \leq \mu + \gamma, \ \mathsf{deg}_x \, \hat{d}_{12} & = \mu, \ \mathsf{deg}_x \, \hat{d}_{21} & = \mu + 2\gamma. \end{aligned}$$

Proof.

On the one hand,

$$D = P^{-1}AP - \varepsilon P^{-1}P'$$

and

$$D(x,\varepsilon) \sim_1 \hat{D}(x,\varepsilon),$$

as $\varepsilon \to 0$ in \tilde{S} and |x| < r.

On the other hand, $W(x,\eta)=\begin{pmatrix}1&0\\0&x^\gamma\end{pmatrix}R(x,\eta)\mathrm{e}^{\Lambda(x,\eta)}$ is a fundamental system of solutions of equation $\varepsilon\frac{dw}{dx}=D(x,\varepsilon)w$ and

$$D(x,\varepsilon) = \varepsilon W'(x,\eta)W(x,\eta)^{-1}.$$

$$\Rightarrow$$
 a bound for the degree of each entry of $\hat{D}(x,\varepsilon)$.

Let $ilde{D}=\left(egin{array}{cc} ilde{d}_{11} & ilde{d}_{12} \\ ilde{d}_{22} & - ilde{d}_{11} \end{array}
ight)$ be a matrix of polynomials in x such that $\tilde{D}(x,\varepsilon) \sim_1 \hat{D}(x,\varepsilon),$

as
$$arepsilon o 0$$
 in $ilde{S}$ and $|x| < r$, and

 $\deg_{\mathbf{v}} \tilde{d}_{12} = \mu$ $\deg_{\mathbf{v}} \tilde{d}_{21} = \mu + 2\gamma.$

as
$$arepsilon o 0$$
 in $ilde{S}$ and $|x| < r,$ and
$${\sf deg}_x \ ilde{d}_{11} \le \mu + \gamma,$$

Let $ilde{D}=\left(egin{array}{cc} \ddot{d}_{11} & \ddot{d}_{12} \\ \ddot{d}_{22} & -\ddot{d}_{11} \end{array}
ight)$ be a matrix of polynomials in x such that

$$\tilde{D}(x,\varepsilon) \sim_1 \hat{D}(x,\varepsilon),$$

as arepsilon o 0 in $ilde{S}$ and |x| < r, and

$$\deg_x \tilde{d}_{11} \le \mu + \gamma,$$

$$\deg_x \tilde{d}_{12} = \mu,$$

$$\deg_x \tilde{d}_{21} = \mu + 2\gamma.$$

Proposition

For all $r \in]0, r_0[$, there exists $\tilde{P}(x, \varepsilon)$, holomorphic and bounded on $D(0,r) \times \tilde{S}$, admitting an asymptotic expansion of Gevrey order 1, such that $\det P_0(x) \equiv 1$ and the change of variables $y = \tilde{P}(x, \varepsilon)w$ reduces the differential system $\varepsilon \frac{dy}{dx} = A(x, \varepsilon)y$ to

$$\varepsilon \frac{dw}{dx} = \tilde{D}(x, \varepsilon)w.$$

The main result (even case)

Theorem

If (C) is satisfied, then, $\forall r \in]0, r_0[$ and for all sufficiently small open sector S with vertex in 0, there exists a 2×2 holomorphic and bounded matrix $T(x,\varepsilon)$ on $D(0,r) \times S$ such that $T(x,\varepsilon) \sim_1 \hat{T}(x,\varepsilon)$ as $\varepsilon \to 0$ in S and |x| < r, $\det T_0(x) \equiv 1$ and

$$\varepsilon \frac{dy}{dx} = A(x,\varepsilon)y \sim_{y=T(x,\varepsilon)z} \varepsilon \frac{dz}{dx} = B(x,\varepsilon)z$$

where

$$B(x,\varepsilon) = \begin{pmatrix} 0 & x^{\mu} \\ x^{\mu+2\gamma} & 0 \end{pmatrix} + \varepsilon \begin{pmatrix} b_{11}(x,\varepsilon) & b_{12}(x,\varepsilon) \\ b_{21}(x,\varepsilon) & -b_{11}(x,\varepsilon) \end{pmatrix},$$

and the bij are polynomials in x such that

$$\deg_x b_{11} < \mu$$
, $\deg_x b_{12} < \mu$ and $\deg_x b_{21} < \mu + 2\gamma$.