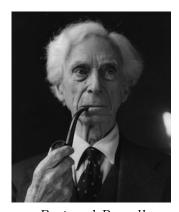
Chapitre 1 : Logique et ensembles

Un chapitre, un mathématicien



Bertrand Russell (1872-1970)

Bertrand Arthur William Russell est un mathématicien, logicien, philosophe, épistémologue, homme politique et moraliste britannique. Il est considéré comme le fondateur de la logique moderne.

À la fin du XIXème siècle, le besoin de faire reposer les mathématiques sur des fondations solides se fait sentir. Cantor élabore la théorie des ensembles : un ensemble regroupe des objets qui vérifient une propriété donnée. En 1902, dans cette théorie « naïve » des ensembles, Russell décèle une contradiction. En voici

une version populaire, connue sous le nom de *paradoxe du barbier* : Sur l'enseigne du barbier du village, on peut lire :

« Je rase tous les hommes du village qui ne se rasent pas eux-mêmes, et seulement ceux-là. »

Savez-vous qui rase le barbier?

Suggestion de lecture : *Logicomix* (Apostolos Doxiadis, Christos Papadimitriou, Alecos Papadatos, Annie di Donna – Vuibert – 2010)

1 Logique

▶ Proposition-Assertion

Définition. Une **proposition**, ou **assertion**, est un énoncé mathématique complet qui est soit vrai, soit faux.

Exemple. « Le carré d'un nombre réel est positif » est une assertion vraie. « Tout nombre premier est un entier impair » est une assertion fausse.

On peut, à partir d'une ou de plusieurs propositions, construire de nouvelles propositions.

Soient P et Q deux propositions.

ightharpoonup Équivalence : $P \Leftrightarrow Q$

Définition. La proposition $\ll P \Leftrightarrow Q \gg \text{ est}$ vraie quand les propositions P et Q sont soit toutes les deux vraies, soit toutes les deux fausses.

P	Q	$P \Leftrightarrow Q$
V	V	V
V	F	F
\mathbf{F}	V	\mathbf{F}
F	F	V

Exemple. L'équivalence $(x^2 = 1) \iff (x = 1 \text{ ou } x = -1)$ se lit $\ll x^2 = 1$ si et seulement si x = 1 ou x = -1 ».

▶ Négation : \overline{P}

Définition. La proposition \overline{P} est vraie quand P est fausse et elle est fausse quand P est vraie.

P	\overline{P}
V	F
F	V

Exemple. La négation de x > 1 est $x \le 1$:

$$\overline{x > 1} \iff x \leqslant 1.$$

Remarque. La négation d'une inégalité stricte est une inégalité large, et celle d'une inégalité large est une inégalité stricte.

ightharpoonup Conjonction : « P et Q »

Définition. La conjonction de deux propositions P et Q, notée « P et Q », est vraie si les deux propositions sont simultanément vraies, et fausse sinon.

P	Q	P et Q
V	V	V
V	\mathbf{F}	F
\mathbf{F}	V	F
F	F	F

Exemple. La conjonction $\ll 3$ est un nombre premier ET $\sqrt{2}$ est un entier \gg est une proposition fausse.

ightharpoonup Disjonction : « P ou Q »

Définition. La disjonction de deux propositions P et Q, notée « P ou Q », est vraie quand l'une des propositions est vraie, et est fausse quand les deux sont simultanément fausses.

P	Q	P ou Q
V	V	V
V	\mathbf{F}	V
F	V	V
F	F	\mathbf{F}

Exemple. La disjonction « 3 est un nombre premier OU $\sqrt{2}$ est un entier » est une proposition vraie.

▶ Implication : $P \Rightarrow Q$

Définition. La proposition $\ll P \Rightarrow Q \gg \text{ est}$ vraie quand P est fausse ou Q est vraie.

P	Q	$P \Rightarrow Q$
V	V	V
V	F	\mathbf{F}
F	V	V
F	F	V

Exemple. L'implication $(n^2 \text{ impair} \Rightarrow n \text{ impair})$ se lit « si n^2 est impair, alors n est impair ».

Théorème.

$$(P \Rightarrow Q) \iff (\overline{P} \text{ ou } Q)$$

Démonstration.

P	Q	\overline{P}	\overline{P} ou Q
V	V	F	V
V	\mathbf{F}	\mathbf{F}	F
F	V	V	V
F	F	V	V

Donc $(P \Rightarrow Q) \iff (\overline{P} \text{ ou } Q).$

Vocabulaire

L'implication $P \Rightarrow Q$ peut se lire « si la proposition P est vraie, alors la proposition Q est vraie ». Ainsi :

- pour que P soit vraie, il faut que Q soit vraie : on dit que Q est une **condition nécessaire** à P;
- pour que Q soit vraie, il suffit que P soit vraie : on dit que P est une **condition suffisante** à Q.

Exemple. « ABCD est un parallélogramme » est une condition nécessaire à « ABCD est un losange », mais la condition n'est pas suffisante.

 $\ll ABCD$ est un carré » est une condition suffisante à « ABCD est un losange ».

Lorsqu'une condition est à la fois nécessaire et suffisante, on parle de **condition nécessaire et suffisante** (CNS). On utilisera alors la formule \ll si et seulement si \gg .

Définition. La **réciproque** de la proposition $P \Rightarrow Q$ est

$$Q \Rightarrow P$$
.

Exemple. D'après le théorème de Pythagore :

Théorème – Si un triangle ABC est rectangle en C, alors $AB^2 = AC^2 + BC^2$.

L'implication réciproque est également vraie :

Réciproque du théorème de Pythagore – Si $AB^2 = AC^2 + BC^2$, alors le triangle ABC est rectangle en C.

ightharpoonup Contraposée de $P \Rightarrow Q$

Définition. La contraposée de l'implication $P \Rightarrow Q$ est :

$$\overline{Q}\Rightarrow \overline{P}.$$

Exemple. La contraposée de $(n^2 \text{ impair} \Rightarrow n \text{ impair})$ est

Théorème.

$$(P \Rightarrow Q) \iff (\overline{Q} \Rightarrow \overline{P})$$

► Quantificateurs

- \forall se lit « pour tout » ou « quel que soit »,
- \exists se lit « il existe »,
- \exists ! se lit « il existe un unique ».

Soient E un ensemble et P(x) une proposition contenant la variable x.

- La proposition $\ll \forall x \in E, \ P(x) \gg \text{ signifie que tout élément } x \text{ de } E$ vérifie la proposition P(x).
- La proposition $\ll \exists x \in E, \ P(x) \gg \text{ signifie qu'il existe au moins un élément } x \text{ de } E \text{ qui vérifie la proposition } P(x).$

Exemple. La proposition $\ll \forall x \in \mathbb{R}, x^2 \geqslant 0 \gg \text{se lit } \dots$
La proposition $\ll \exists x \in \mathbb{R}, \ x^2 = 2 \gg \text{se lit} \dots$
La proposition $\ll \exists ! x \in \mathbb{R}^+, \ x^2 = 2 \gg \text{se lit} \dots$

▶ Négation d'une proposition

Théorème.			
	\overline{P} ou \overline{Q}	\iff	$(\overline{P} \text{ et } \overline{Q})$
	\overline{P} et \overline{Q}	\iff	$(\overline{P} \text{ ou } \overline{Q})$

La négation	de l'assertion $(1 \leqslant x \leqslant 2)$ est
Théorème	e. La négation de $P \Rightarrow Q$ est $(P \text{ et } \overline{Q})$:
	$\overline{P \Rightarrow Q} \Longleftrightarrow (P \text{ et } \overline{Q})$
Exemple.	La négation de l'assertion $(x \ge 2) \Rightarrow (x^2 + 1 \ge 5)$ est
La négation	de l'assertion (n est pair) \Rightarrow ($n+1$ est impair) est
	on d'une proposition avec quantificateurs
	on d'une proposition avec quantificateurs
► Négatio	on d'une proposition avec quantificateurs
► Négatio	on d'une proposition avec quantificateurs
➤ Négatio Théorème Exemple.	on d'une proposition avec quantificateurs
➤ Négatio Théorème Exemple.	on d'une proposition avec quantificateurs

2 Ensembles

2.1 Ensembles usuels

• N, ensemble des entiers naturels :

$$\mathbb{N} = \{0, 1, 2, \dots\}.$$

• \mathbb{Z} , ensemble des entiers relatifs :

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

• D, ensemble des nombres décimaux :

$$\mathbb{D} = \left\{ \frac{a}{10^n}, \ a \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right\}.$$

• Q, ensemble des rationnels :

$$\mathbb{Q} = \left\{ \frac{a}{b}, \ a \in \mathbb{Z} \text{ et } b \in \mathbb{N}^* \right\}.$$

 \bullet \mathbb{R} , ensemble des nombres réels :

$$\mathbb{R} =]-\infty, +\infty[$$
.

• \mathbb{R}_+ , ensemble des nombres réels positifs ou nuls :

$$\mathbb{R}_+ = [0, +\infty[.$$

• \mathbb{R}_{-} , ensemble des nombres réels négatifs ou nuls :

$$\mathbb{R}_{-} =]-\infty, 0]$$

 \bullet \mathbb{C} , ensemble des nombres complexes :

$$\mathbb{C} = \{ a + ib, \ a \in \mathbb{R} \text{ et } b \in \mathbb{R} \}.$$

• $\mathbb{N}^*, \mathbb{Z}^*, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{R}^*_+, \mathbb{R}^*_-, \mathbb{C}^*$, ensembles privés de zéro :

$$\mathbb{R}_+^{\star} =]0, +\infty[.$$

• $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Certains nombres réels ne sont pas rationnels. Ces nombres sont appelés **nombres irrationnels**. Par exemple : $\sqrt{2}$, π et e sont irrationnels.

2.2 Ensembles, éléments et sous-ensembles

On ne définit pas réellement la notion d'ensemble. C'est un objet auquel peut appartenir ou ne pas appartenir un autre objet.

- Soit E un ensemble. On note : $x \in E$ pour $\ll x$ appartient à $E \gg$ et $x \notin E$ pour $\ll x$ n'appartient pas à $E \gg$. On appelle **élément** de l'ensemble E un objet qui appartient à E.
- Soient E et F deux ensembles. On dit que F est **inclus** dans E, et on note $F \subset E$, si tout élément de F est élément de E. On dit aussi que F est un **sous-ensemble** ou une **partie** de E.
- On appelle **ensemble vide**, et on note Ø, l'ensemble qui n'a aucun élément.
- Un ensemble qui possède un unique élément est appelé **singleton**. Il ne faut pas confondre l'élément x et le singleton $\{x\}$.

Remarque. L'appartenance est une relation qui lie un élément et un ensemble; l'inclusion est une relation qui lie deux ensembles :

élément \in ensemble et ensemble \subset ensemble .

Exemple. Compléter les assertions suivantes :

2.3 Produit cartésien

Définition. Soient E et F deux ensembles. On peut définir le **produit cartésien** de E et F, noté $E \times F$: il s'agit de l'ensemble des couples (x, y) tels que x est élément de E et y élément de F.

2.4 Ensemble des parties d'un ensemble

Définition. Tous les sous-ensembles d'un ensemble E constituent un nouvel ensemble, appelé **ensemble des parties** de E et noté $\mathcal{P}(E)$.

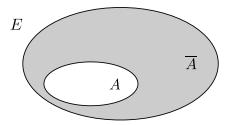
Exemple. Soit $E = \{1, 2, 3\}$. Décrire $\mathcal{P}(E)$.

Opérations dans $\mathcal{P}(E)$:

Soient E un ensemble et $A, B \subset E$.

▶ Complémentaire : $C_E(A)$, noté aussi \overline{A}

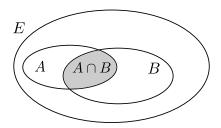
$$x \in \overline{A} \iff x \in E \text{ et } x \notin A$$



Exemple. $x \in \overline{[1, +\infty[} \iff \dots$

▶ Intersection : $A \cap B$

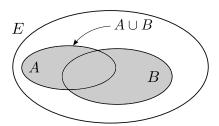
$$x \in A \cap B \iff x \in A \text{ et } x \in B$$



Exemple. $x \in [1, +\infty[\cap] -\infty, 2] \iff \dots$

▶ Réunion : $A \cup B$

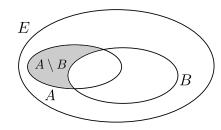
$$x \in A \cup B \iff x \in A \text{ ou } x \in B$$



Exemple. $x \in [1,3] \cup [2,4] \iff \dots$

ightharpoonup Différence : $A \setminus B$

$$x \in A \setminus B \iff x \in A \text{ et } x \notin B$$



3 Démonstration : méthodes

▶ Raisonnement par implication :

Exercice 1. Soit $x \in \mathbb{R}$. Montrer que $(x > 2 \Longrightarrow x^2 > 1)$.

► Raisonnement par équivalence :

Exercice 2. Soient $(a,b) \in \mathbb{R}^2$. Montrer que :

$$(a+b)^2 = a^2 + b^2 \iff (a=0 \text{ ou } b=0).$$

Exercice 3. Montrer que, pour tout $(x, y) \in \mathbb{R}^2$,

$$xy \le \frac{1}{2} \left(x^2 + y^2 \right).$$

▶ Raisonnement par l'absurde :

Pour prouver qu'une proposition P est vraie, on montre que la proposition \overline{P} est fausse. En pratique, on suppose que P est fausse et on aboutit à une contradiction.

Exemple issu de la vie courante. Un de mes amis, qui s'appelle Pierre, m'avait dit : « Je passerai peut-être chez toi lundi après-midi. Si tu n'es pas là, je laisserai un mot dans la boîte aux lettres ». Or j'ai été obligé(e) de sortir lundi après-midi. En rentrant chez moi, je constate qu'il n'y a pas de mot dans la boîte aux lettres... Pierre est-il passé chez moi ce lundi après-midi?

Exemple. On montre que $\sqrt{2}$ n'est pas un rationnel en utilisant un raisonnement par l'absurde.

Exercice 4. On considère un rectangle d'aire 170 m^2 . Montrer que sa longueur est supérieure à 13 m.

► Contraposée :

Exercice 5. Soit $n \in \mathbb{Z}$. On souhaite montrer que si n^2 est impair, alors n est impair.

- 1. Quelle est la contraposée de cette implication?
- 2. La démontrer.
- 3. Conclure.

▶ Disjonction des cas :

Exercice 6. Montrer que $\forall n \in \mathbb{N}$, l'entier n(n+1) est divisible par 2.

► Récurrence

Pour démontrer par récurrence la propriété P_n , où n est un entier naturel, on procède en trois étapes.

Étapes	Rédaction
On introduit P_n	Pour tout $n \in \mathbb{N}$, on pose P_n : $()$
$ \begin{array}{ c c c c }\hline {\rm Initialisation} & {\rm : \ On \ v\acute{e}rifie} \\ \hline P_0 & & \\ \hline \end{array} $	P_0 est vraie car $()$
<u>Hérédité</u> :	Supposons P_n vraie et montrons P_{n+1} .
On vérifie $P_n \Rightarrow P_{n+1}$	()
	donc P_{n+1} est vraie.
Conclusion	Le principe de récurrence assure que pour tout $n \in \mathbb{N}, ()$

Exercice 7. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que

$$\begin{cases} u_0 = 0, \\ \text{pour tout } n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2 - u_n}. \end{cases}$$

Montrer que pour tout $n \in \mathbb{N}$, $u_n = \frac{n}{n+1}$.

ightharpoonup Analyse-Synthèse :

On procède en deux étapes.

Analyse. On détermine les **candidats**, hypothétiques solutions de l'équation, en raisonnant par implication.

Synthèse. On teste chacun des candidats obtenus en les injectant dans l'équation pour déterminer s'ils sont ou non des solutions.

Exercice 8. Déterminer les réels x tels que

$$\sqrt{x(x-3)} = \sqrt{3x-5}.$$